Spelling suggestions: "subject:"anaxyrus boreal"" "subject:"anaxyrus koreas""
1 |
Life in a drawdown zone: natural history, reproductive phenology, and habitat use of amphibians and reptiles in a disturbed habitat.Boyle, Kelly 08 August 2012 (has links)
Canada is the second highest producer of hydroelectric energy in the world. Nearly 50 of the hydroelectric reservoirs in the country have a capacity larger than 1 billion m3. Despite the great number and extent of hydropower developments in Canada and around the world, relatively little is known about how dams and their operations influence terrestrial and semi-aquatic wildlife. Reservoirs at northern latitudes are characterized by large fluctuations in water level, which create modified shorelines called drawdown zones. To evaluate the impact of these disturbances on amphibians and reptiles, I conducted visual encounter surveys at two sites in the drawdown zone of Kinbasket Reservoir, near Valemount, B.C. From April to August of 2010 and 2011, I documented the habitat use, reproductive phenology, and body condition of two amphibian species (Anaxyrus boreas and Rana luteiventris) as well as the growth, movements, diet, and distribution of one species of garter snake (Thamnophis sirtalis). At two sites in the drawdown zone, A. boreas and R. luteiventris were present for the duration of the summer and utilized several ponds for reproduction. The presence and abundance of Rana luteiventris eggs were generally associated with ponds that had higher mean temperatures, higher mean pH, and the presence of fish. In 2010, there was sufficient time for amphibian breeding and metamorphosis to occur before the reservoir inundated the drawdown zone, but low precipitation levels in that year led to desiccation of many breeding ponds. In 2011, high rainfall and snowmelt led to early inundation of breeding ponds, and thousands of tadpoles were presumably swept into the reservoir. Gravid Thamnophis sirtalis were found at just one of two sites in the drawdown zone, but both sites were frequented by foraging individuals of this species. Anaxyrus boreas appears to be the primary prey of T. sirtalis in the drawdown zone. An improved understanding of how the amphibians and reptiles at Kinbasket Reservoir have persisted in this highly disturbed environment may be vital to their conservation — the activation of a new generating unit at Mica Dam in 2014 will alter the pattern and timing of reservoir inundation for the first time since it was constructed 40 years previously. / Graduate
|
2 |
Habitat use of the western toad in north-central Alberta and the influence of scaleBrowne, Constance 06 1900 (has links)
The western toad (Anaxyrus boreas, formerly Bufo boreas) is one of many amphibian species considered to be at risk of extinction (COSEWIC status is Special Concern). I examined habitat use patterns of the western toad using several methods to gain a better understanding of its habitat requirements. I examined the relationship between relative abundance of the western toad and two sympatric amphibian species (wood frog, Lithobates sylvaticus; and boreal chorus frog, Pseudacris maculata) and habitat features at eight scales of spatial extent at 24 wetlands in the Lake Utikuma region of Alberta, Canada. I radio-tracked adult western toads in three study areas in the Aspen Parkland and Boreal regions of north-central Alberta to examine 1) whether patterns of habitat selection change with different scales of spatial extent, spatial resolution, habitat composition, temporal period, and between males and females during the active period, 2) habitat used for hibernation, and 3) factors influencing the timing and nature of movements to hibernation sites.
I found that the abundance of the three amphibian species was best described at different spatial extents and was related to the biology of each species. Resource Selection Function (RSF) models, created using radio-telemetry data, indicated that habitat selection was scale-dependent for western toads; differences in selection were observed among study designs, study areas, time periods, and sexes. Predictive ability did not differ significantly among study designs. However, models that were created using a fine-grained map and home-range spatial extent generally produced models with greater predictive ability than models using a coarse-grained map or population-range extent. During the active season toads selected open habitat types such as wet shrub, disturbed grass, and crop/hay fields. Western toads hibernated terrestrially in pre-existing tunnels and the majority of toads hibernated in forest stands dominated by spruce. Toads used hibernation sites 1461936 m from breeding ponds and 68% of hibernacula were communal. Arrival at and entry into hibernation sites was influenced by temperature and/or day length; larger toads moved to hibernation sites later in the year. My research results can be used to identify and protect habitat for western toads in Canada. / Environmental Biology and Ecology
|
3 |
Habitat use of the western toad in north-central Alberta and the influence of scaleBrowne, Constance Unknown Date
No description available.
|
Page generated in 0.0442 seconds