• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 664
  • 275
  • 82
  • 58
  • 32
  • 14
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • Tagged with
  • 1386
  • 263
  • 220
  • 216
  • 186
  • 147
  • 124
  • 118
  • 103
  • 103
  • 80
  • 79
  • 78
  • 77
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Determinação da entropia de mistura amônia e água para aplicações em processos de refrigeração por absorção /

Napoleão, Diovana Aparecida dos Santos. January 2003 (has links)
Orientador: José Luz Silveira / Banca: Carlos Daniel Ebinuma / Banca: Julio Santana Antunes / Banca: Nathan Mendes / Banca: Electo Eduardo Silva Lora / Resumo: Os sistemas de refrigeração por absorção da mistura amônia-água têm sido amplamente utilizados e referenciados na literatura. Normalmente, os modelos encontrados para análises são baseados considerando-se, dados de tabelas e diagramas para a entalpia em função da concentração. Para a análise de tabelas e diagramas de entropia em função da concentração de amônia na mistura, não se detém a mesma atenção, existindo ausência de dados disponíveis na literatura para esta propriedade termodinâmica. Estes sistemas apresentam-se complexos quanto aos parâmetros físico-químicos, tornando-se necessário um estudo mais aprofundado e detalhado da termodinâmica associada, corroborando para a determinação da inter-relação da entropia com outras propriedades associadas a refrigeração. Neste trabalho são formulados modelos de cálculos para o levantamento da entropia em função da temperatura, pressão e concentração de misturas amônia-água S = S (T, P, x). A confecção dos diagramas de entropia na fase líquido-vapor foram determinados visando auxiliar projetos industriais através de análises energéticas e exergéticas, simulação e otimização de processos relacionados ao sistema de refrigeração por absorção. / Abstract: Refrigeration systems of the ammonia-water mixtures by absorption have been widely used and referred in the literature. Usually the models found for analyses are based taking in to account data of tables and diagrams for the enthalpy as a function of the concentration. For the analysis of tables and entropy diagrams in function of the concentration of ammonia in the mixture, it has not been taken the same attention, existing lack of available data in the literature for that thermodynamic property. These systems seem to be complex as for the physiochemical parameters, becoming necessary a deeper and detailed study on the associated thermodynamics, corroborating to determine the interrelation of the entropy with other associated refrigeration properties. In this work, calculation models to improve the entropy are formulated in function of temperature, pressure and concentration of the ammonia-water mixtures S = S (T, P, x). The performance of the entropy diagrams in the liquid-vapor phase was surely aiming to aid industrial projects through energy analyses and exergetic simulation and optimization of processes related to the system of cooling by absorption. / Doutor
82

Theoretical Study of Variable Measurement Uncertainty h_I and Infinite Unobservable Entropy

Vanslette, Kevin M 25 April 2013 (has links)
This paper examines the statistical mechanical and thermodynamical consequences of variable phase-space volume element $h_I=?igtriangleup x_i?igtriangleup p_i$. Varying $h_I$ leads to variations in the amount of measured entropy of a system but the maximum entropy remains constant due to the uncertainty principle. By taking $h_u ightarrow 0^+$ an infinite unobservable entropy is attained leading to an infinite unobservable energy per particle and an unobservable chemical equilibrium between all particles. The amount of heat fluxing though measurement apparatus is formulated as a function of $h_I$ for systems in steady state equilibrium as well as the number of measured particles or sub-particles so any system can be described as unitary or composite in number. Some example systems are given using variable $h_I$.
83

Average co-ordinate entropy and a non-singular version of restricted orbit equivalence

Mortiss, Genevieve Catherine, Mathematics, UNSW January 1997 (has links)
A notion of entropy is defined for the non-singular action of finite co-ordinate changes on X - the infinite product of two- point spaces. This quantity - average co-ordinate or AC entropy - is calculated for product measures and G-measures on X, and an equivalence relation is established for which AC entropy is an invariant. The Inverse Vitali Lemma is discussed in a measure preserving context, and it is shown that for a certain class of measures on X known as odometer bounded, the result will still hold for odometer actions. The foundations for a non-singular version of Rudolph's restricted orbit equivalence are established, and a size for non-singular orbit equivalence is introduced. It is shown that provided the Inverse Vitali Lemma still holds, the non-singular orbit equivalence classes can be described using this new size.
84

Image Thresholding Technique Based On Fuzzy Partition And Entropy Maximization

Zhao, Mansuo January 2005 (has links)
Thresholding is a commonly used technique in image segmentation because of its fast and easy application. For this reason threshold selection is an important issue. There are two general approaches to threshold selection. One approach is based on the histogram of the image while the other is based on the gray scale information located in the local small areas. The histogram of an image contains some statistical data of the grayscale or color ingredients. In this thesis, an adaptive logical thresholding method is proposed for the binarization of blueprint images first. The new method exploits the geometric features of blueprint images. This is implemented by utilizing a robust windows operation, which is based on the assumption that the objects have &quote;C&quote; shape in a small area. We make use of multiple window sizes in the windows operation. This not only reduces computation time but also separates effectively thin lines from wide lines. Our method can automatically determine the threshold of images. Experiments show that our method is effective for blueprint images and achieves good results over a wide range of images. Second, the fuzzy set theory, along with probability partition and maximum entropy theory, is explored to compute the threshold based on the histogram of the image. Fuzzy set theory has been widely used in many fields where the ambiguous phenomena exist since it was proposed by Zadeh in 1965. And many thresholding methods have also been developed by using this theory. The concept we are using here is called fuzzy partition. Fuzzy partition means that a histogram is parted into several groups by some fuzzy sets which represent the fuzzy membership of each group because our method is based on histogram of the image . Probability partition is associated with fuzzy partition. The probability distribution of each group is derived from the fuzzy partition. Entropy which originates from thermodynamic theory is introduced into communications theory as a commonly used criteria to measure the information transmitted through a channel. It is adopted by image processing as a measurement of the information contained in the processed images. Thus it is applied in our method as a criterion for selecting the optimal fuzzy sets which partition the histogram. To find the threshold, the histogram of the image is partitioned by fuzzy sets which satisfy a certain entropy restriction. The search for the best possible fuzzy sets becomes an important issue. There is no efficient method for the searching procedure. Therefore, expansion to multiple level thresholding with fuzzy partition becomes extremely time consuming or even impossible. In this thesis, the relationship between a probability partition (PP) and a fuzzy C-partition (FP) is studied. This relationship and the entropy approach are used to derive a thresholding technique to select the optimal fuzzy C-partition. The measure of the selection quality is the entropy function defined by the PP and FP. A necessary condition of the entropy function arriving at a maximum is derived. Based on this condition, an efficient search procedure for two-level thresholding is derived, which makes the search so efficient that extension to multilevel thresholding becomes possible. A novel fuzzy membership function is proposed in three-level thresholding which produces a better result because a new relationship among the fuzzy membership functions is presented. This new relationship gives more flexibility in the search for the optimal fuzzy sets, although it also increases the complication in the search for the fuzzy sets in multi-level thresholding. This complication is solved by a new method called the &quote;Onion-Peeling&quote; method. Because the relationship between the fuzzy membership functions is so complicated it is impossible to obtain the membership functions all at once. The search procedure is decomposed into several layers of three-level partitions except for the last layer which may be a two-level one. So the big problem is simplified to three-level partitions such that we can obtain the two outmost membership functions without worrying too much about the complicated intersections among the membership functions. The method is further revised for images with a dominant area of background or an object which affects the appearance of the histogram of the image. The histogram is the basis of our method as well as of many other methods. A &quote;bad&quote; shape of the histogram will result in a bad thresholded image. A quadtree scheme is adopted to decompose the image into homogeneous areas and heterogeneous areas. And a multi-resolution thresholding method based on quadtree and fuzzy partition is then devised to deal with these images. Extension of fuzzy partition methods to color images is also examined. An adaptive thresholding method for color images based on fuzzy partition is proposed which can determine the number of thresholding levels automatically. This thesis concludes that the &quote;C&quote; shape assumption and varying sizes of windows for windows operation contribute to a better segmentation of the blueprint images. The efficient search procedure for the optimal fuzzy sets in the fuzzy-2 partition of the histogram of the image accelerates the process so much that it enables the extension of it to multilevel thresholding. In three-level fuzzy partition the new relationship presentation among the three fuzzy membership functions makes more sense than the conventional assumption and, as a result, performs better. A novel method, the &quote;Onion-Peeling&quote; method, is devised for dealing with the complexity at the intersection among the multiple membership functions in the multilevel fuzzy partition. It decomposes the multilevel partition into the fuzzy-3 partitions and the fuzzy-2 partitions by transposing the partition space in the histogram. Thus it is efficient in multilevel thresholding. A multi-resolution method which applies the quadtree scheme to distinguish the heterogeneous areas from the homogeneous areas is designed for the images with large homogeneous areas which usually distorts the histogram of the image. The new histogram based on only the heterogeneous area is adopted for partition and outperforms the old one. While validity checks filter out the fragmented points which are only a small portion of the whole image. Thus it gives good thresholded images for human face images.
85

Caractérisation stochastique des sprays ultrasoniques : le formalisme de l'entropie maximale

Dobre, Miruna 09 May 2003 (has links)
Développer une méthode de caractérisation théorique complète d'un spray sur base de la connaissance du mécanisme de formation des gouttes et pouvant être appliquée de façon similaire quel que soit le type de spray, constitue l'axe central de la présente recherche. La difficulté principale étant la connaissance de la physique de rupture de la nappe liquide en gouttelettes, l'étude entreprise s'est attachée à la description du spray ultrasonique, qui a l'avantage d'impliquer un mécanisme de formation d'ondes de surface (ondes de Faraday) largement étudié. Les moyens mis en oeuvre pour trouver la loi de distribution théorique qui décrit au mieux la pulvérisation ultrasonique sont, d'un côté, l'analyse de l'instabilité des ondes de surface, qui permet de déterminer les caractéristiques moyennes du spray, et de l'autre, une méthode stochastique, le formalisme de l'entropie maximale, qui fournit la distribution la plus probable basée sur les caractéristiques moyennes et sur les lois de conservation élémentaires applicables à tout type de pulvérisation (conservation de la masse et de l'énergie). La validation expérimentale de cette nouvelle approche théorique a permis en outre de développer de nouveaux designs de pulvérisateurs performants.// To develop a method of complete theoretical characterization of a spray based on the knowledge of the of droplet formation mechanism and being able to be applied in a similar way whatever the type of spray, constitute the central axis of this research. The main difficulty being the knowledge of the physics of liquid film break-up into droplets, the study undertaken was concerned with the description of the ultrasonic spray, which has the advantage of implying a mechanism of formation of surface waves (Faraday waves) largely studied. The means implemented to find the theoretical droplet size distribution which describes ultrasonic atomization as well as possible are, first, analysis of surface waves instability, which allows to determine the average characteristics of the spray, and then, a stochastic method, the maximum entropy formalism, which provides the most probable distribution based on the average characteristics and the elementary laws of conservation applicable to any type of atomization (mass and energy conservation). The experimental validation of this new theoretical approach made it possible moreover to develop new designs of powerful ultrasonic atomizers.
86

Holographic Entanglement Entropy: RG Flows and Singular Surfaces

Singh, Ajay 07 August 2012 (has links)
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various properties of strongly coupled field theories. In the context of the holography, Ryu and Takayanagi have proposed an elegant method to calculate entanglement entropy for these field theories. In this thesis, we use this holographic entanglement entropy to study a candidate c-theorem and entanglement entropy for singular surfaces. We use holographic entanglement entropy for strip geometry and construct a candidate c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a ‘phase transition’ as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop. Then, we turn towards studying the holographic entanglement entropy for regions with a singular boundary in higher dimensions. Here, we find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge c. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, extended singularities contribute through new linear or quadratic terms in logarithm only when the locus of the singularity is even dimensional and curved.
87

Fluid transport and entropy production in electrochemical and microchannel droplet flows

Odukoya, Adedoyin 01 April 2012 (has links)
The growth of energy demand in the world requires addressing the increasing power requirements of industrial and residential consumers. Optimizing the design of new and existing large power producing systems can efficiently increase energy supply to meet the growing demand. Hydrogen as an energy carrier is a promising sustainable way to meet the growing energy demand, while protecting the environment. This thesis investigates the efficient production of hydrogen from the electrolysis of copper chloride, by predicting entropy production as a result of diffusive mass transfer. Also, this thesis investigates the possibility of producing electrical energy from waste heat produced by industrial or other sources. The thermocapillary motion of fluid droplet in a closed rectangular microchannel is used to generate electrical energy from waste heat in a piezoelectric membrane by inducing mechanical deformation as a result of the droplet motion. Modeling, fabrication, and experimental measurement of a micro heat engine (MHE) are investigated in this study. Analytical and experimental results are reported for both circular and rectangular microchannels. A novel fabrication technique using lead zirconate titanate (PZT) as substrate in microfluidic application is presented in this study. This thesis develops a predictive model of the entropy production due to thermal and fluid irreversibilities in the microchannel. Thermocapillary pressure and friction forces are modelled within the droplet, as well as surface tension hysteresis during start-up of the droplet motion. A new analytical model is presented to predict the effect of transient velocity on the voltage production in the MHE. In order to predict the effect of the applied stress on voltage, the different layers of deposition are considered for thin film laminates. The highest efficiency of the system from simulated taking into iv account the electromechanical coupling factor is about 1.6% with a maximum voltage of 1.25mV for the range of displacement considered in this study. In addition, new experimental and analytical results are presented for evaporation and de-pinning of deionised water and toluene droplets in rectangular microchannels fabricated from Su-8 2025 and 2075. / UOIT
88

Tsallis Entropy Based Velocity Distribution in Open Channel Flows

Luo, Hao 2009 December 1900 (has links)
The Tsallis entropy is applied to derive both 1-D and 2-D velocity distributions in an open channel cross section. These distributions contain a parameter m through which the Tsallis entropy becomes a generalization of the Shannon entropy. Different m parameter values are examined to determine the best value for describing the velocity distribution.Two Lagrangian parameters that are involved in the final form of 1-D velocity distribution equation are determined from observations of mean velocity and the maximum velocity at the water surface. For channels which are not wide and where the maximum velocity does not occur at the water surface, a 2-D velocity distribution is more appropriate. The Tsallis entropy is applied to derive 2-D velocity distributions. A new parameter M is introduced which represents the hydraulic characteristics of the channel. The derived velocity distributions are verified using both field data and experimental data. The advantages are found by comparing with Parandtl-von Karman, power law and Chiu’s velocity distributions.
89

An Information-theoretical Fairness metric for IEEE802.11 Wireless LAN

Yen, Shin-Jung 27 July 2004 (has links)
In this paper, we propose a novel information-theoretical fairness metric to evaluate the fairness of bandwidth allocation to distributed nodes in local area network. When the source traffic pattern is fixed, the proposed metric is a mapping from the set of all medium access control (MAC) protocols to the interval [0,1] in the real line such that a larger value corresponds to a MAC protocol that allocates bandwidth more fairly. The metric is applicable for a wide range of medium access control schemes including those in which the packet lengths are not identical and/or multipacket reception (MPR) capability is available. To verify the correctness of the novel metric, we use it to evaluate the fairness levels of an IEEE 802.11 wireless LAN composed of homogeneous or heterogeneous nodes. Our simulations indicate that for the IEEE 802.11 protocol, the short-term fairness level is low while the long-term fairness level is high. The information-theoretical fairness metric leads to a conclusion that is consistent to the previous finding in the lecture.
90

Study on the Weldability of New High Performance High-Entropy Alloys

Lei, Yao-Jen 24 July 2006 (has links)
none

Page generated in 0.0847 seconds