• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 121
  • 22
  • 9
  • 8
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 372
  • 121
  • 72
  • 62
  • 59
  • 54
  • 50
  • 41
  • 37
  • 35
  • 32
  • 31
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Mechanisms of vascular disease: divergent roles for suppressor of cytokine signaling 3 in angiotensin II-induced vascular dysfunction

Li, Ying 01 December 2014 (has links)
Angiotensin II (Ang II) promotes vascular disease and hypertension, in part, by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Extensive studies have demonstrated that SOCS3 plays an important role in suppressing the IL-6/STAT3 pathway in the immune system and in cancer biology. In contrast, the functional importance of SOCS3 in cardiovascular disease is largely unknown. Thus, the overall goal of these studies was to investigate the role of SOCS3 in models of Ang II-dependent vascular disease and hypertension. To examine direct effects of Ang II on the vessel wall, carotid arteries from SOCS3 haplodeficient (SOCS3+/-) mice and wild-type littermates (SOCS3+/+) were incubated with the peptide or vehicle for 22 hrs, followed by examination of endothelial function using acetylcholine. Relaxation to acetylcholine was similar in all arteries incubated with vehicle. A low concentration of Ang II (1 nmol/L) did not affect acetylcholine-induced vasodilation in SOCS3+/+ mice, but reduced responses in arteries from SOCS3+/- mice by ~50% (P<0.05). This Ang II-induced endothelial dysfunction in SOCS3+/- mice was prevented by inhibitors of NF-êB or STAT3, an IL-6 neutralizing antibody, or a scavenger of superoxide. Responses to nitroprusside, an endothelium-independent vasodilator, were similar in all groups. To test the importance of SOCS3 in vivo, mice were infused systemically with a pressor dose of Ang II (1.4 mg/kg per day) or vehicle for 14 days via osmotic mini-pumps. Acetylcholine-induced vasodilation in carotid and resistance arteries in brain from SOCS3+/- mice was reduced by ~60% (P<0.05). Surprisingly, genetic deficiency in SOCS3 prevented the majority of Ang II-induced endothelial dysfunction without affecting the pressor response to Ang II. To investigate potential mechanisms underlying divergent results when studying effects of local versus systemic effects of Ang II, we performed bone marrow transplantation followed by infusion of vehicle or Ang II for two weeks. Lethally irradiated WT (CD45.1) mice reconstituted with SOCS3+/- bone marrow were protected from Ang II-induced endothelial dysfunction (P<0.05), while reconstitution of irradiated SOCS3+/- mice with WT (CD45.1) bone marrow exacerbated Ang II-induced vascular dysfunction (P<0.05). WT (CD45.1) into SOCS3+/+ and SOCS3+/- into SOCS3+/- bone marrow chimeras exhibited vascular function consistent with non-irradiated controls. In addition, the pressor response to Ang II was reduced by ~50% in WT mice reconstituted with bone marrow from SOCS3+/- mice (P<0.05). These data suggest that SOCS3 exerts divergent or context-dependent effects depending on whether vascular dysfunction was due to local versus systemic administration of Ang II. SOCS3 deficiency in the vessel wall enhanced local detrimental effects of Ang II on vascular function. In contrast, bone marrow-derived cells that are haplodeficient in SOCS3 protect against systemically administered Ang II and the resulting vascular dysfunction and hypertension. To my knowledge, these are the first experimental studies that begin to define the importance of SOCS3 in Ang II-induced hypertension and endothelial dysfunction. Results obtained from these experiments provide new insight into mechanisms which regulate oxidative stress and inflammation within the vasculature. The studies also revealed that bone marrow-derived cells that are haplodeficient in SOCS3 protect against pressor and endothelial effects of Ang II. These findings may eventually contribute to the development of novel therapeutic approaches for hypertension and hypertension associated end-organ damage.
112

Protection against Angiotensin II-induced endothelial dysfunction and hypertension via small molecule inhibitors of signal transducer and activator of transcription 3

Johnson, Andrew William 01 May 2012 (has links)
Angiotensin II (Ang II) promotes vascular disease and hypertension in part by the formation of pro-inflammatory cytokines, oxidative stress and inflammation. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor known to play key roles in cytokine signaling and growth in immune cells. We tested the hypothesis that STAT3 plays an essential role in Ang II-induced vascular dysfunction and hypertension. Responses of carotid arteries from C57BL6 mice were examined in vitro after 22-hour incubation with vehicle or Ang II (10 nM) in the presence or absence of a small molecule inhibitor of STAT3 activation, S3I-201. The endothelium-dependent agonist acetylcholine (Ach) produced relaxation in arteries treated with vehicle and the response was inhibited by ~50% by Ang II (P<0.01). S3I-201 (10 πM) co-incubation prevented the Ang II-induced dysfunction. Relaxation to nitroprusside, an endothelium-independent agonist, was not altered in any group. Ang II increased vascular superoxide more than 2-fold (P<0.05) measured by chemiluminescence. S3I-201 (10 πM) prevented the Ang II induced increase of superoxide. Similar findings were obtained with STATTIC, a second small molecule inhibitor of STAT3 activation. In contrast to these findings, lipopolysaccharide (0.5 πg/ml)-induced endothelial dysfunction was not altered by S3I-201. Blood pressure and responses of carotid arteries and small resistance arteries within the brain were examined in C57BL6 mice with either saline or Ang II (1000 ng/kg/min) infused for 14 days via osmotic minipump, which were also treated with dimethyl sulfoxide (vehicle) or S3I-201 (5 mg/kg, IP, every two days). Infusion with Ang II increased systolic blood pressure compared to saline-infused animals (155±2 and 112±2 mmHg, respectively; P<0.001). S3I-201 reduced pressure slightly in saline infused mice but protected against Ang II-induced increase in pressure at 14 days (102±2 and 114±3 mmHg, respectively). Following systemic treatment with Ang II, carotid artery relaxation responses to Ach were significantly impaired compared to vehicle infused mice (72±3% and 101±1%, respectively, P<0.05). S3I-201 treatment significantly prevented Ang II-induced impairment (94±4%, P<0.05). Ang II treated mice exhibited 55% impaired dilator responses to Ach in small resistance arteries within the brain studied in vitro and S3I-201 treatment prevented most of this impairment (P<0.05). Vasorelaxation to nitroprusside was not altered in any group. In summary, these findings provide the first evidence that STAT3 plays an essential role in Ang II-induced vascular dysfunction and hypertension. Targeting STAT3 with small molecule inhibitors or other approaches may have beneficial effects during hypertension and other disease states in which Ang II contributes to vascular dysfunction (e.g. diabetes and aging).
113

Oxidative stress in the central nervous system mediates angiotension II-dependent hypertension

Zimmerman, Matthew Christopher 01 January 2004 (has links)
The brain renin-angiotensin system (RAS), of which angiotensin II (AngII) is the primary effector peptide, plays a critical role in the neurohumoral regulation of cardiovascular and body fluid homeostasis by modulating blood pressure, secretion of hypothalamic and pituitary hormones, and water intake. AngII produced locally in the brain or in the systemic circulation can act on brain regions called circumventricular organs (CVO), which lack the blood-brain-barrier. Dysregulation of central AngII signaling is implicated in the pathogenesis of hypertension; therefore, understanding the mechanisms of AngII in the CNS is an important area of investigation. Recently, a novel signaling mechanism for AngII in the periphery has been shown to involve NAD(P)H oxidase-derived reactive oxygen species (ROS). Although ROS are now known to be involved in numerous AngII-regulated processes in peripheral tissues, and are increasingly implicated in CNS neurodegenerative diseases, the role of ROS in central regulation of AngII-induced cardiovascular function remains unexplored. The hypothesis that ROS are critically involved in central AngII signaling and in AngII-dependent blood pressure and drinking behavior was tested by harnessing the power of an array of selective genetic tools, in combination with novel technologies for analysis of cardiovascular function in conscious mice. More specifically, central injections of adenoviruses encoding ROS-modulating molecules were used to examine the redox mechanisms in central AngII-mediated cardiovascular responses in vivo. Neuronal cell cultures were also used to investigate the involvement of NAD(P)H oxidase-derived ROS in AngII signaling, as well as to examine a link between calcium and ROS in intra-neuronal AngII signaling. Finally, in order to better understand the potential role of ROS in the brain in the pathogenesis of AngII-dependent hypertension, a mouse model that recapitulates the characteristics of human hypertension was employed in conjunction with genetic modulation of the redox state of the brain. These studies provide new evidence that ROS are involved in the intracellular signaling mechanism of AngII in the brain under normal and pathological conditions and offer new insight to how dysregulation of redox mechanisms in the brain may lead to the pathogenesis of AngII-dependent hypertension.
114

Cardiovascular oxidative stress: recent findings on ACE2 And MAO

Pena Silva, Ricardo Alfonso 01 July 2012 (has links)
Oxidative stress is associated with development and progression of cardiovascular disease. Angiotensin II produces oxidative stress and endothelial dysfunction, and its actions may be attenuated by the activity of angiotensin converting enzyme type 2 (ACE2) which converts angiotensin II to the vasoprotective peptide angiotensin (1-7). Similarly, increased oxidative stress is associated with aortic valve stenosis in humans and mice. In my thesis studies, I explore mechanisms of modulation and generation of oxidative stress in cerebral arteries and heart valves. First, I tested the hypothesis that ACE2 deficiency increases oxidative stress and vasomotor dysfunction in cerebral arteries, and examined the role of ACE2 in vascular aging. Vasomotor function was assessed in the basilar artery ex vivo of adult and old ACE2 deficient (ACE2-/y) and wild type (WT or ACE2+/y) mice. ACE2 was present, but at relatively low levels in cerebral arteries. Systolic blood pressure was similar in adult and old ACE2-/y and ACE2+/y mice. Maximal dilatation to acetylcholine was impaired in the basilar artery from adult ACE2-/y mice compared to adult ACE2+/y. In old mice, maximal vasodilatation to acetylcholine was impaired in ACE2+/y mice and severely impaired in ACE2-/y mice. The antioxidant tempol improved responses to acetylcholine in adult and old ACE2-/y and ACE2+/y mice. Nitrotyrosine staining in the basilar artery was increased in adult ACE2-/y mice and in old ACE2-/y and ACE2+/y mice relative to adult ACE2+/y, which indicates that oxidative stress was higher in cerebral arteries from ACE2 deficient mice and old mice. Expression of NADPH oxidase subunits Nox2 and p47phox, and of pro-inflammatory molecules Rcan1 and TNF alpha; was increased in cerebral arteries from old ACE2-/y and ACE2+/y mice. Additionally, I tested the hypothesis that serotonin induces oxidative stress in human heart valves, and examined mechanisms by which serotonin may increase reactive oxygen species (ROS). Superoxide (O2.-) was measured in heart valves from explanted human hearts that were not used for transplantation. Superoxide levels (lucigenin-enhanced chemiluminescence) were increased in homogenates of cardiac valves and pulmonary artery after incubation with serotonin. A non-specific inhibitor of flavin-oxidases (DPI), or inhibitors of monoamine oxidase-MAO (tranylcypromine and clorgyline), prevented serotonin-induced increase in O2.-. Dopamine, another MAO substrate which is increased in patients with carcinoid syndrome, also increased superoxide levels in heart valves, and this effect was attenuated by clorgyline. Apocynin did not prevent increases in O2.- during serotonin treatment. Addition of serotonin to recombinant human MAO-A generated superoxide, and this effect was prevented by an MAO inhibitor. In conclusion, I have demonstrated that ACE2 deficiency impairs vasomotor function in cerebral arteries from adult mice and augments endothelial dysfunction during aging. Oxidative stress plays a critical role in cerebrovascular dysfunction induced by ACE2 deficiency and aging. I have also identified a novel mechanism whereby MAO-A can contribute to increased oxidative stress in human heart valves and pulmonary artery exposed to serotonin and dopamine.
115

Entstehung von oxidativen Stressmarkern in DNA und RNA nach der Behandlung mit den Hormonen Angiotensin II und Aldosteron in vitro und in vivo : Vergleich von drei Analysemethoden zum Nachweis von 8-Oxo-2'-desoxyguanosin in LLC-PK1-Zellen / Formation of oxidative stress markers in DNA and RNA after treatment with aldosterone and angiotensin II in vitro and in vivo

Mandel, Philipp January 2014 (has links) (PDF)
The detection of oxidative stress markers has gained increasing importancy in the early investigation of diseases like diabetes, cancer or hypertension. 8 oxo 2' deoxyguanosine (8-oxodG) is the main marker, which is used for the intracellular detection of oxidative stress levels. However, the oxidative stress markers 8 oxoguanine (8-oxoGua), a product of the DNA base excision repair and 8 oxoguanosine (8-oxoGuo), a marker for oxidative damaged RNA have received less attention up to now. The renin-angiotensin-aldosterone system (RAAS) plays an important role in the regulation processes of the blood pressure system. During hypertension angiotensin II (Ang II) and aldosterone (Aldo) are released in high concentrations over a longer period leading to non-physiological effects of the RAAS hormones. Subsequently, an increase of the intracellular oxidative stress level in kidney cells can be measured. The aim of this thesis is the in vitro and in vivo detection of the oxidative damage in DNA and RNA by measuring oxidative stress markers, especially 8-oxodG which is triggered by Ang II and Aldo. In vitro experiments were carried out in LLC-PK1, a cell line originated from porcine kidney cells. It could been shown that Ang II and Aldo led to a dose-dependent increase of DNA damage in the cells. A time-dependent increase was detected for the first 30 minutes of the treatment. For the rest of the experimental set up (4 h) the level of detected DNA damage remained constant. The FPG comet assay and the immunocytochemical staining showed a significant increase of 8-oxodG in the cells, whereas the HPLC-MS/MS measurement only detected a small increase of 8-oxodG in the DNA. The FPG enzyme, which recognises also other oxidized purines besides 8-oxodG, which led to an overestimation of 8-oxodG in the comet assay. Also, the 8 oxodG antibody, which was used in the immunocytochemical analysis, detected higher amounts of 8-oxodG most likely due to its side reactions with other oxidized DNA structures. One of the main advantages of the last mentioned methods is the direct measurement in damaged cells, whereas the HPLC-MS/MS requires an isolation of the DNA. During this isolation process the oxidative stress markers can be oxidized and the detection can become imprecise. The main purpose of the in vivo experiments was the detection of the oxidative stress marker 8-oxoGua, 8-oxodG and 8-oxoGuo in the urine of test animals. The treatment of C57BL/6 mice and Sprague Dawley (SD) rats with the RAAS hormones led to an increase of the blood pressure, higher DNA damage due to oxidative stress as well as an increased excretion rate of oxidative stress markers. The inhibition of the angiotensin II type 1- or mineralocorticoid receptor and a mutation of the AT1a gene could show, that the DNA damage is independent from the hypertension. In addition, it was shown that the NOX4 is not alone responsible for the oxidative stress. Other NADPH oxidases must contribute to the induction of oxidative stress inside the cell. Moreover, the activation of the Nrf2 pathway has an influence on the effect of Aldo in SD rats. The excretion rate of the oxidative stress markers in the 20 h urine of the treated animals showed how the equilibrium between the DNA repair and the oxidative stress level was changing over time. The measurement of 8-oxoGuo became more and more popular, because up to the fact that 80 % of the DNA is translated into RNA. Overall, the detection of 8-oxodG and 8-oxoGuo is feasible for monitoring the disease or the healing process, because the measurement is non-invasive. The detection of 8-oxodG and 8-oxoGuo in nucleic acids is a first step into the field of basic research methods, because it reveals a snapshot of the nucleic acid damage in the cell at a specific time point. Usually, there will be an overestimation of the oxidative stress marker resulting from the analytical method. Although, it is possible to detect an underestimation of oxidative stress markers in tissue samples if not all cell types are damaged equally. Therefore, a primary goal should be the detection of a stable oxidation product of guanine to insure a reliable detection strategy and for a better understanding of the equilibrium of DNA oxidation and repair. / Der Nachweis von oxidativen Stressmarkern hat bei der Untersuchung von Krankheiten wie Diabetes, Krebs und Hypertonie an großer Bedeutung gewonnen. Vor allem 8-Oxo-2’-desoxyguanosin (8-oxodG) wird gezielt mit verschiedenen Methoden gemessen und als Marker für oxidativen Stress herangezogen. Daneben haben 8 Oxoguanin (8-oxoGua), als Produkt aus der Basenexzisionsreparatur der DNA, sowie 8-Oxoguanosin (8-oxoGuo), als Biomarker für oxidativ geschädigte RNA, bisher weniger Aufmerksamkeit bekommen. Das Renin-Angiotensin Aldosteron System (RAAS) spielt eine wichtige Rolle in der Regulierung des Blutdrucks. Im Falle einer Hypertonie werden Angiotensin II (Ang II) und Aldosteron (Aldo) über einen langen Zeitraum in erhöhter Konzentration ausgeschüttet. Dieser Umstand bewirkt eine nicht physiologische Wirkung der Hormone des RAAS, welche zu einer Induktion von oxidativem Stress führt. Die Zielsetzung dieser Arbeit ist es, die oxidative Schädigung, ausgelöst durch Ang II und Aldo, in der DNA und der RNA in vitro und in vivo nachzuweisen und dabei speziell den Biomarker 8-oxodG zu untersuchen. In-vitro-Experimente wurden mit LLC PK1-Zellen, einer Schweinenierenzelllinie, durchgeführt. Ang II und Aldo lösten einen dosisabhängigen Anstieg der DNA Schäden in LLC PK1 Zellen aus. Eine Zeitabhängigkeit wurde für die ersten 30 Minuten gezeigt. Für die restliche Zeit (4 h) blieb der nachgewiesene DNA Schaden konstant. Der FPG Comet-Assay und die immunzytochemische Färbung zeigten jeweils eine signifikante Zunahme von 8-oxodG in LLC-PK1-Zellen an, während die HPLC MS/MS Messung nur geringe Veränderungen nachwies. Das FPG Enzym erkennt neben 8-oxodG auch andere oxidierte Purine und sorgte so für eine Überbestimmung des DNA-Schadens. Bei der immunzytochemischen Färbung entsteht die Überbestimmung durch Kreuzreaktionen des 8 oxodG Antikörpers mit oxidierten Strukturen in der DNA. Der Vorteil beider Analysemethoden ist die direkte Messung von Schädigungen in der Zelle, während die HPLC-MS/MS eine Isolierung der Nukleinsäuren voraussetzt. Bei diesem Schritt kann es zur Oxidation der Marker für oxidativen Stress kommen, welche einen genauen Nachweis erschwert. In vivo-Versuche hatten zum Ziel, die oxidativen Stressmarker 8-oxoGua, 8-oxodG und 8-oxoGuo im Urin nachzuweisen. Die Behandlung der C57BL/6-Mäuse und Sprague Dawley-Ratten (SD-Ratten) mit den Hormonen des RAAS zeigten einen Anstieg des Blutdrucks, erhöhte DNA Schäden durch oxidativen Stress sowie erhöhte Exkretionsraten der oxidativen Stressmarker. Durch eine Inhibierung des Angiotensin II-Typ1- oder Mineralkortikoidrezeptors sowie die Mutation des Gens AT1a konnte gezeigt werden, dass die Schädigungen unabhängig vom Blutdruck sind. Zudem konnte gezeigt werden, dass neben NOX4 auch andere NADPH Oxidasen für den oxidativen Stress verantwortlich sein müssen. Eine Aktivierung des Nrf2 Signalweges in den SD-Ratten hat Einfluss auf die Wirkung von Aldo. Die Exkretionsrate der oxidativen Biomarker im 20-h-Urin der behandelten Tiere zeigen, wie sich das Gleichgewicht zwischen DNA-Reparatur und oxidativem Stress verändert. Da 80 % der DNA in RNA umgeschrieben werden, ist der Nachweis von 8 oxoGuo in den Fokus gerückt. In der praktischen Anwendung kann mit der Messung von 8 oxodG und 8-oxoGuo ein Krankheits- oder Heilungsprozess auf nicht invasive Weise verfolgt werden. Der Nachweis von 8-oxodG und 8-oxoGuo in den Nukleinsäuren stellt einen Einstieg für die Grundlagenforschung dar, da sie nur eine Momentaufnahme der Nukleinsäureschädigung in der Zelle zeigen. Meist findet eine Überbestimmung, ausgelöst durch die Messmethode, statt. In Gewebeproben kann eine Unterbestimmung vorliegen, falls nicht alle Zelltypen vom oxidativen Stress betroffen sind. Daher sollte es ein vorrangiges Ziel sein, ein stabileres Oxidationsprodukt des Guanins nachzuweisen, um das Gleichgewicht der DNA-Oxidation und Reparatur besser zu verstehen.
116

Relevance of angiotensin II type 1a receptor and NADPH oxidase for the formation of angiotensin II-mediated DNA damage / Relevanz des Angiotensin II Typ 1a-Rezeptors und der NADPH-Oxidase für die Entstehung Angiotensin II-vermittelter DNA-Schäden

Zimnol, Anna January 2017 (has links) (PDF)
Das Renin-Angiotensin-Aldosteron-System (RAAS) reguliert den Blutdruck sowie den Elektrolyt- und Wasserhaushalt. Das aktive Peptid, Angiotensin II (AngII), führt dabei zur Vasokonstriktion und in höheren Konzentrationen zu Bluthochdruck. Hypertensive Patienten haben ein erhöhtes Risiko an Krebs zu erkranken, vor allem an Nierenkrebs. Wir konnten bereits in vivo zeigen, dass AngII in der Lage ist, den Blutdruck zu steigern und dosisabhängig zu DNA-Schäden über den Angiotensin II Typ 1-Rezeptor (AT1R) führt. Ein stimuliertes RAAS kann ferner über die Aktivierung der NADPH-Oxidase, einer Hauptquelle der Generierung reaktiver Sauerstoffspezies (ROS) in der Zelle, zu oxidativem Stress führen. Zielsetzung dieser Arbeit war es zum einen, mit Hilfe von AT1a-Rezeptor-defizienten Mäusen in vivo zu prüfen, ob die Bildung von ROS, sowie die Bildung von DNA-Schäden in der Niere und im Herzen unabhängig von einem erhöhten Blutdruck auftreten. Zum anderen sollte, ebenfalls in vivo, untersucht werden, ob eine oder beide von zwei untersuchten Isoformen der NADPH-Oxidase (Nox) für die Auslösung oxidativen Stresses in der Niere verantwortlich ist. Zunächst wurden für den Versuch zur Überprüfung der Abhängigkeit AngII-induzierter DNA-Schäden vom Blutdruck männliche C57BL/6-Mäuse und AT1a-Knockout (KO)-Mäuse mit osmotischen Minipumpen ausgestattet, die AngII in einer Konzentrationen von 600 ng/kg min über einen Zeitraum von 28 Tagen abgaben. Zusätzlich wurde eine Gruppe von AngII-behandelten Wildtyp (WT)-Mäusen mit dem AT1-Rezeptor-Blocker Candesartan (Cand) behandelt. Während des Versuchszeitraumes fanden regelmäßige, nicht-invasive Blutdruckmessungen an den wachen Mäusen statt. In WT-Mäusen induzierte AngII Bluthochdruck, verursachte erhöhte Albumin-Level im Urin und führte zur Bildung von ROS in Niere und im Herzen. Außerdem traten in dieser Gruppe DNA-Schäden in Form von Einzel- und Doppelstrangbrüchen auf. All diese Reaktionen auf AngII konnten jedoch durch gleichzeitige Behandlung mit Cand verhindert werden. AT1a-KO-Mäuse hatten, verglichen mit WT-Kontrollmäusen, einen signifikant niedrigeren Blutdruck und normale Albumin-Level im Urin. In AT1a-KO-Mäusen, die mit AngII behandelt wurden, konnte kein Anstieg des systolischen Blutdrucks sowie kein Einfluss auf die Nierenfunktion gefunden werden. Jedoch führte AngII in dieser Gruppe zu einer Steigerung von ROS in der Niere und im Herzen. Zusätzlich wurden genomische Schäden, vor allem in Form von Doppelstrangbrüchen signifikant in dieser Gruppe induziert. Auch wenn AT1a-KO-Tiere, unabhängig von einer AngII-Infusion, keine eingeschränkte Nierenfunktion zeigten, so wiesen sie erhebliche histopathologische Schäden im Hinblick auf die Glomeruli und das Tubulussystem auf. Diese Art von Schäden deuten auf eine besondere Bedeutung des AT1aR im Hinblick auf die embryonale Entwicklung der Niere hin. Zusammenfassend beweisen die Ergebnisse dieses Experiments eindeutig, dass eine AngII-induzierte ROS-Produktion und die Induktion von DNA-Schäden unabhängig von einem erhöhten Blutdruck auftreten. Da in der AngII-behandelten AT1a-KO-Gruppe eine signifikant höhere Expression des AT1b-Rezeptors zu finden war und die Blockade von beiden Rezeptorsubtypen mit Cand zu einer Verhinderung der schädlichen Effekte durch AngII führte, scheint der AT1bR im Falle einer AT1aR-Defizienz für die Entstehung der Schäden zuständig zu sein. Ziel des zweiten Experimentes war es, den Beitrag der Nox2 und Nox4 zum oxidativen DNA-Schaden in vivo zu untersuchen. Hierfür wurden männliche C57BL/6-Mäuse und Nox2- oder Nox4-defiziente Mäuse mit osmotischen Minipumpen ausgestattet, die AngII in einer Konzentration von 600 ng/kg min über einen Zeitraum von 28 Tagen abgaben. Im WT-Stamm und in beiden Nox-defizienten Stämmen induzierte AngII Bluthochdruck, verursachte erhöhte Albumin-Level im Urin und führte zur Bildung von ROS in der Niere. Außerdem waren in allen AngII-behandelten Gruppen genomische Schäden, vor allem in Form von Doppelstrangbrüchen, erhöht. Auch in Abwesenheit von AngII wiesen Nox2- und Nox4-defiziente Mäuse mehr Doppelstrangbrüche im Vergleich zu WT-Kontrollmäusen auf. Interessanterweise kompensieren allerdings weder Nox2 noch Nox4 das Fehlen der jeweils anderen Isoform auf RNA-Basis. Aufgrund dieser Ergebnisse schließen wir, dass bislang keine Isoform alleine für die Generierung von oxidativen DNA-Schäden in der Niere verantwortlich gemacht werden kann und dass eine Beteiligung einer weiteren Nox-Isoform sehr wahrscheinlich ist. Möglicherweise könnten aber auch andere ROS-generierende Enzyme, wie Xanthinoxidase oder Stickoxidsynthase involviert sein. Da genomische Schäden in Nieren von Nox2- und Nox4-defizienten Mäusen in Abwesenheit von AngII gegenüber den Schäden in WT-Kontrollmäusen erhöht waren, könnten die beiden Isoformen auch eine schützende Funktion im Bereich von Nierenkrankheiten übernehmen. Da dies aber bislang nur für Nox4 beschrieben ist, ist es wahrscheinlicher, dass das Fehlen von einer der beiden Isoformen eher einen Einfluss auf die Embryonalentwicklung hat. Um dies jedoch abschließend zu klären wäre es sinnvoll mit induzierbaren Knockout-Modellen zu arbeiten, bei denen mögliche entwicklungsbedingte Effekte minimiert werden können. / The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure, electrolyte metabolism and water balance. The reactive peptide, Angiotensin II (AngII), of the RAAS causes vasoconstriction and, in higher concentrations, increased blood pressure. Hypertensive patients have an increased risk to develop cancer, especially kidney cancer. We have shown in vivo, that AngII is capable to cause an elevation of blood pressure, as well as DNA damage dose-dependently via the AngII type 1 receptor (AT1R). A stimulated RAAS can further lead to oxidative stress by activating NADPH oxidases which are major enzymatic sources of reactive oxygen species (ROS) in the cell. On the one hand the aim of this work was to examine in vivo with the help of AT1aR-deficient mice whether the formation of ROS and DNA damage in the kidney and the heart occur independently of an increased blood pressure. On the other hand we wanted to investigate whether one or both of the two examined isoforms of the NADPH oxidase (Nox) is responsible for the triggering of oxidative stress in the kidney. For the purpose of the first experiment which examined the dependency of AngII-induced DNA damage on blood pressure, male C57BL/6-mice and AT1a-knockout (KO)-mice were equipped with osmotic minipumps, delivering AngII in a concentration of 600 ng/kg x min during 28 days. Additionally, wild-type (WT) mice were treated with the AT1R antagonist candesartan (cand). Over the whole time period, frequent non-invasive blood pressure measurements were taken. In WT mice, AngII induced hypertension, an elevated urinary albumin level and formation of ROS in kidney and heart. Furthermore, genomic damage, in form of single- and double strand breaks, was augmented in this group. All these responses to AngII could be attenuated by concurrent administration of candesartan. AT1a-deficient mice had lower basal systolic pressures than WT mice and comparable urinary albumin levels. In AT1a-deficient mice treated with AngII, systolic pressure was not increased, and no effect on renal function could be detected. However, AngII led to an increase of ROS in kidney and heart in this group. In addition, genomic damage, especially in form of double strand breaks was significantly induced. Although AT1a-KO-mice, independent of an AngII-infusion, showed no renal impairment they had significant histopathological changes in glomeruli and tubules. This points to a special importance of AT1aR with regard to the embryonic development of the kidney. In summary our results clearly demonstrate that AngII-induced ROS production and DNA damage is independent of blood pressure. Since we found a significantly higher expression of the AT1bR in the AngII-treated AT1aR-KO-group and since blocking of both subtypes with cand resulted in a complete prevention of adverse AngII effects, the receptor responsible for the mediation of these effects seems to be AT1bR. The aim of the second experiment was to examine the contribution of Nox2 and Nox4 to oxidative DNA damage in vivo. Therefore male C57BL/6-mice and Nox2- or Nox4-deficient mice were equipped with osmotic minipumps, delivering AngII in a concentration of 600 ng/kg × min during 28 days. In WT and in both strains of Nox-deficient mice, AngII induced hypertension, elevated urinary albumin levels and formation of ROS in the kidney. Furthermore, genomic damage, especially in form of double strand breaks were augmented in all of the AngII-treated groups. Also in the absence of AngII, Nox2- and Nox4-deficient mice exhibited a higher background of double strand breaks. Interestingly neither Nox2 nor Nox4 do not compensate for the deficiency of the other isoform on mRNA level. Due to these results we conclude that there is no isoform so far which is solely responsible for the generation of ROS in the kidney under AngII-treatment. Potentially there might also be a contribution of other enzymes like xanthine oxidase or nitric oxide synthase to the formation of ROS. Since genomic damage in kidneys of Nox2- and Nox4-deficient mice in the absence of AngII was higher as compared to the damages in WT control mice it might be that both isoforms could have a protective role in renal disease. But, since this is so far only described for Nox4 it is likely that the absence of one of the two isoforms rather has an influence on the embryonic development. To finally clarify this hypothesis it would be suggestive to work with inducible knockout mouse models where possible developmental effects can be minimized.
117

Interaction between Adenosine and Angiotensin II in Renal Afferent Arterioles of Mice

Lai, Enyin January 2007 (has links)
<p>Renal arterioles represent the most important effecter site in the control of renal perfusion and filtration. Adenosine (Ado), angiotensin II (Ang II) and nitric oxide (NO) interact in modulating arteriolar tone. The present work investigates the mechanism of this interaction. We tested the hypothesis that AT<sub>1</sub> receptor (AT<sub>1</sub>AR) mediated NO release in isolated perfused afferent arterioles. Further, special attention was given to mechanisms of Ado-Ang II -interactions.</p><p>We found (I) that Ang II specifically induces NO release via AT<sub>1</sub>AR in arterioles. The effect is important in view of high renin and Ang II concentrations in these vessels. (II) Ado modulates the Ang II response by acting on vasoconstrictor A<sub>1</sub>AR and vasodilator A<sub>2</sub>AR. Vice versa, Ang II critically enhances the constriction to Ado, which supports the assumption of its modulating action in the tubuloglomerular feedback (TGF). (III) The synergistic effect of Ang II and Ado on arteriolar contraction is concurrent with an increase in the cytosolic calcium. Further, (IV) Ado increases the calcium sensitivity of the contractile machinery in arteriolar smooth muscle cells most probably by enhancement of the phosphorylation of the myosin light chain regulatory unit. RhoA kinase, protein kinase C and p38 MAP are involved in the Ado effect, which is not receptor mediated and depends on the Ado uptake into vascular cells. Remarkably, the enhancing action of Ado is most likely limited to Ang II; since Ado does not influence endothelin-1 and norepinephrine induced contractions.</p><p>These novel results extend our knowledge about the synergistic action of Ang II and Ado in the control of renal filtration. Ado, the key factor in mediation of the TGF, develops a significant vasoconstrictor action only in the presence of Ang II. On the other hand, the Ang II induced vasoconstriction is modulated by Ado via receptor and non-receptor mediated intracellular signaling pathways.</p>
118

Matrix metalloproteinase-2 mediates angiotensin II-induced hypertension

Odenbach, Jeffrey 06 1900 (has links)
Angiotensin II signals cardiovascular disease through metalloproteinases including MMP-2, MMP-7 and ADAM-17/TACE. We hypothesized that these metalloproteinases regulate each other at the transcriptional level. Further, MMP-2, being a major gelatinase in cardiac and vascular tissue, could mediate angiotensin II-induced cardiovascular disease. We studied the development of hypertension (by tail cuff plethysmography), cardiac hypertrophy (by M-mode echocardiography and qRT-PCR analysis of hypertrophy marker genes) and fibrosis (by collagen staining and qRT-PCR analysis of fibrosis marker genes) in mice receiving angiotensin II. Angiotensin II induced hypertension, cardiac hypertrophy and fibrosis which correlated with an upregulation of MMP-2. Downregulation of MMP-2 by pharmacological inhibition and RNA interference attenuated hypertension but not cardiac hypertrophy or fibrosis. Downregulation of MMP-7 or ADAM-17/TACE by RNA interference attenuated angiotensin II-induced MMP-2 upregulation as well as hypertension, cardiac hypertrophy and fibrosis. We conclude that MMP-2 selectively mediates angiotensin II-induced hypertension under the transcriptional control of MMP-7 and ADAM-17/TACE.
119

The Role of Podocyte Prostaglandin E2 and Angiotensin II Receptors in Glomerular Disease

Stitt, Erin Maureen 24 February 2011 (has links)
The incidence of chronic kidney disease (CKD) is increasing. CKD is characterized by a gradual decrease in renal function leading to end stage renal disease (ESRD). Damage to the glomerular podocytes, is one of the first hallmarks of CKD. We hypothesized that podocyte prostaglandin E2 (PGE2) receptors contribute to the progression of glomerular injury in models of CKD. To test this hypothesis, transgenic mice were generated with either podocyte-specific overexpression or deletion of the PGE2 EP4 receptor (EP4pod+and EP4pod-/- respectively). Mice were next tested in the 5/6 nephrectomy (5/6 Nx) or angiotensin II (Ang II) models of CKD. These studies revealed increased proteinuria and decreased survival for EP4pod+ mice while EP4pod-/- mice were protected against the development of glomerular injury. Furthermore, our findings were supported by in vitro studies using cultured mouse podocytes where an adhesion defect was uncovered for cells overexpressing the EP4 receptor. Additionally, our investigations have demonstrated a novel synergy between angiotensin II AT1 receptors and prostaglandin E2 EP4 receptors. This was revealed by in vitro studies using isolated mouse glomeruli. There we were able to show that Ang II stimulation leads to increased expression of cyclooxygenase 2 (COX-2), the enzyme responsible for synthesis of PGE2, in a p38 mitogen activated protein kinase (MAPK) dependent fashion. Moreover increased PGE2 synthesis was measured in response to Ang II stimulation. We confirmed the presence of this synergy in our cultured mouse podocytes and showed an adhesion defect in response to Ang II stimulation which was COX-2 and EP4 dependent. These findings suggest that Ang II AT1 receptors and PGE2 EP4 receptors act in concert to exacerbate glomerulopathies. Studies using mice with either podocyte-specific overexpression of a dominant negative p38 MAPK or mice with global deletion of the EP1 receptor did not provide conclusive results as to their respective signaling involvement in podocyte injury. Altogether our findings provide novel insight for podocyte PGE2 EP4 and Ang II AT1 receptor signaling in models of CKD. These studies provide novel avenues for pursuing therapeutic interventions for individuals with progressive kidney disease.
120

Characterization of [11C]Methyl-Losartan as a Novel Radiotracer for PET Imaging of the AT1 Receptor

Antoun, Rawad 09 March 2011 (has links)
The Angiotensin II Type 1 (AT1) receptor is the main receptor responsible for the effects of the renin-angiotensin system, and its expression pattern is altered in several diseases. [11C]Methyl-Losartan has been developed based on the clinically used AT1 receptor antagonist Losartan. The aim of this work is to characterize the pharmacokinetics, repeatability and reliability of measurements, binding specificity and selectivity of [11C]Methyl-Losartan in rats using in vivo small animal positron emission tomography (PET) imaging, ex vivo biodistribution and in vitro autoradiography methods. Also, we aim to measure the presence of metabolites in the kidney and plasma using high-performance liquid chromatography. We have demonstrated in vivo that [11C]Methyl-Losartan is taken up in the AT1 receptor-rich kidneys and that it is displaceable by selective AT1 receptor antagonists. Using ex vivo biodistribution, we have confirmed these results and demonstrated that [11C]Methyl-Losartan binds selectively to the AT1 receptor over the AT2, Mas and β-adrenergic receptors. In vitro autoradiography results confirmed these renal binding selectivity studies. [11C]Methyl-Losartan was also shown to have one and two C-11 labeled metabolites in the plasma and kidneys, respectively. In conclusion, [11C]Methyl-Losartan is a promising agent for studying the AT1 receptor in rat models with normal and altered AT1 receptor expression using small animal PET imaging.

Page generated in 0.2952 seconds