Spelling suggestions: "subject:"annulation d'interférence"" "subject:"cannulation d'interférence""
1 |
Méthodes d'accès basées sur le codage réseau couche physique / Access methods based on physical layer network codingBUI, Huyen Chi 28 November 2012 (has links)
Dans le domaine des réseaux satellitaires, l'apparition de terminaux interactifs à bas-prix nécessite le développement et la mise en œuvre de protocoles d'accès multiple capables de supporter différents profils d'utilisateurs. En particulier, l'Agence Spatiale Européenne (ESA) et le centre d'étude spatial allemand (DLR) ont récemment proposé des protocoles d'accès aléatoires basés sur le codage réseau couche physique et l'élimination itérative des interférences pour résoudre en partie le problème de collisions sur une voie de retour du type Slotted ALOHA. C'est dans ce contexte que s'inscrit cette thèse qui vise à fournir une amélioration dans des méthodes d'accès aléatoires existantes. Nous introduisons Multi-Slot Coded Aloha (MuSCA) comme une nouvelle généralisation of CRDSA. Au lieu de transmettre des copies du même paquet, l'émetteur envoie plusieurs parties d'un mot de code d'un code correcteur d'erreurs ; chaque partie étant précédée d'un entête permettant de localiser les autres parties du mot de code. Au niveau du récepteur, toutes les parties envoyées par le même utilisateur, y compris celles qui sont interférées par d'autres signaux, participent au décodage. Le signal décodé est ensuite soustrait du signal total. Ainsi, l'interférence globale est réduite et les signaux restant ont plus de chances d'être décodés. Plusieurs méthodes d'analyse de performance basées sur des concepts théoriques (calcul de capacité, évolution des densités) et sur des simulations sont proposées. Les résultats obtenus montrent un gain très significatif de débit global comparé aux méthodes d'accès existantes. Ce gain peut encore être augmenté en variant le taux de découpe des mots de code. En modifiant certains de ces concepts, nous proposons également une application du codage réseau couche physique basée sur la superposition de modulations pour l'accès déterministe à la voie retour des communications par satellite. Une amélioration du débit est aussi obtenue par rapport à des stratégies plus classiques de multiplexage temporal. / In the domain of satellite networks, the emergence of low-cost interactive terminals motivates the need to develop and implement multiple access protocols able to support different user profiles. In particular, the European Space Agency (ESA) and the German Aerospace Center (DLR) have recently proposed random access protocols such as Contention Resolution Diversity Coded ALOHA (CRDSA) and Irregular Repetition Slotted ALOHA (IRSA). These methods are based on physical-layer network coding and successive interference cancellation in order to attempt to solve the collisions problem on a return channel of type Slotted ALOHA.This thesis aims to provide improvements of existing random access methods. We introduce Multi-Slot Coded Aloha (MuSCA) as a new generalization of CRDSA. Instead of transmitting copies of the same packet, the transmitter sends several parts of a codeword of an error-correcting code ; each part is preceded by a header allowing to locate the other parts of the codeword. At the receiver side, all parts transmitted by the same user, including those are interfered by other signals, are involved in the decoding. The decoded signal is then subtracted from the total signal. Thus, the overall interference is reduced and the remaining signals are more likely to be decoded. Several methods of performance analysis based on theoretical concepts (capacity computation, density evolution) and simulations are proposed. The results obtained show a significant gain in terms of throughput compared to existing access methods. This gain can be even more increased by varying the codewords stamping rate. Following these concepts, we also propose an application of physical-layer network coding based on the superposition modulation for a deterministic access on a return channel of satellite communications. We observe a gain in terms of throughput compared to more conventional strategies such as the time division multiplexing.
|
2 |
Faster than Nyquist transceiver design : algorithms for a global transmission-reception enhancement / Transmettre l'information au-delà de la cadence de Nyquist : algorithmes de transmission et réception et optimisation globaleLahbabi, Naila 22 June 2017 (has links)
La croissance exponentielle du trafic de données sans fils, causée par l'Internet mobile et les smartphones, contraint les futurs systèmes radio à inclure des modulations/formes d'ondes plus avancées offrant un débit plus élevé et une utilisation efficace des ressources spectrales. Les transmissions dites Faster-Than-Nyquist (FTN), introduites en 1975, sont parmi les meilleurs candidates pour répondre à ces besoins. En transmettant les symboles à une cadence plus rapide que celle définie par le critère de Nyquist, FTN peut théoriquement augmenter le débit mais en introduisant des interférences en contrepartie. Dans cette thèse, nous explorons le concept des transmissions FTN à travers un canal AWGN (Additive White Gaussian Noise) dans le contexte des modulations OFDM/OQAM (Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation).L'objectif principal de cette thèse est de présenter un système OFDM/OQAM qui permet de transmettre l'information au-delà de la cadence de Nyquist tout en tenant en compte la complexité globale du système. Tout d'abord, nous proposons une nouvelle implémentation efficace des systèmes OFDM/OQAM appliquant le concept FTN, désignée ici par FTN-OQAM, qui garde la même complexité que les systèmes OFDM/OQAM et qui permet un gain en débit très proche du gain théorique. Vu que la condition de Nyquist n'est plus respectée, le signal transmis est maintenant perturbé par des interférences. Pour remédier à ce problème, nous proposons un récepteur basé sur le principe de l'égalisation linéaire sous le critère minimum erreur quadratique moyenne avec annulation d'interférences appelé MMSE LE-IC. Le but de notre système est d'augmenter le débit de transmission, ce qui signifie que des constellations d'ordres élevés seront ciblées. Dans ce contexte, le MMSE LE-IC, dont la complexité est indépendante de la constellation, représente un bon compromis entre efficacité et complexité. Puisque la modulation OFDM/OQAM utilise différents types de formes d'ondes, nous proposons pour plusieurs d'entre elles un algorithme pour déterminer la valeur minimale du facteur d'accélération, en fonction de l'ordre de constellation, qui apporte un gain en efficacité spectrale tout en gardant les mêmes performances que les systèmes respectant le critère de Nyquist à un SNR fixé. Ensuite, nous étudions l'amélioration du traitement itératif de l'émetteur-récepteur. La méthode proposée consiste à combiner un précodeur avec le système FTN-OQAM afin de réduire les interférences causées par du FTN à l'émission. Nous proposons un modèle de précodage dispersé, car il est difficile de précoder conjointement tous les symboles transmis. Nous présentons trois familles de précodeurs avec les récepteurs correspondants. En outre, nous modifions différents blocs de l'émetteur FTN-OQAM tels que le codage canal, le mappage des bits et le mappage des symboles afin d'améliorer davantage le transmetteur FTN-OQAM. Les résultats présentés révèlent le potentiel important des systèmes proposés. / The exponential growth of wireless data traffic driven by mobile Internet and smart devices constrains the future radio systems to include advanced modulations/waveforms offering higher data rates with more efficient bandwidth usage. One possibility is to violate the well known Nyquist criterion by transmitting faster than the Nyquist rate, i.e., using a technique also known as Faster-Than-Nyquist (FTN) signaling. Nyquist-based systems have the advantage of simple transmitter and receiver architectures at the detriment of bandwidth efficiency. The idea of signaling beyond the Nyquist rate to trade the interference-free transmission for more throughput goes back to 1975. In this dissertation, we investigate the concept of FTN signaling over Additive White Gaussian Noise (AWGN) channel in the context of Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation OFDM/OQAM modulation.The main objective of our work is to present an OFDM/OQAM system signaling faster than the Nyquist one and explore its potential rate improvement while keeping under consideration the overall system complexity. First, we propose a new efficient FTN implementation of OFDM/OQAM systems, denoted by FTN-OQAM, that has the same complexity as OFDM/OQAM systems, while approaching very closely the FTN theoretical rate improvement. As the Nyquist condition is no longer respected, severe interference impacts the transmitted signals. To deal with the introduced interferences, we propose a turbo-like receiver based on Minimum Mean Square Error Linear Equalization and Interference Cancellation, named MMSE LE-IC. The aim of our system is to boost the transmission rate, which means that high constellation orders will be targeted. In this respect, the MMSE LE-IC, whose complexity is independent of the constellation, turns out to be a good candidate. Since OFDM/OQAM modulation can be equipped with different types of pulse shapes, we propose an algorithm to find, for different constellation orders, the minimum achieved FTN packing factor for various pulse shapes. Then, we aim at improving the iterative processing of the introduced transceiver. The proposed method involves combining a precoder with the FTN-OQAM system in order to remove FTN-induced interference at the transmitter. We also present a sparse precoding pattern as it is difficult to jointly precode all the transmitted symbols. We introduce three families of precoders along with the corresponding receivers. Furthermore, we propose several modifications of the FTN-OQAM transmitter concerning different blocks such as channel coding, bits mapping and symbols mapping to further enhance the FTN-OQAM transceiver design. Presented results reveal the significant potential of the proposed methods.
|
Page generated in 0.1487 seconds