Spelling suggestions: "subject:"sternquist""
1 |
Récepteurs avancés et nouvelles formes d'ondes pour les communications aéronautiques / Advanced receivers and waveforms for UAV/Aircraft aeronautical communicationsRaddadi, Bilel 03 July 2018 (has links)
De nos jours, l'utilisation des drones ne cesse d'augmenter et de nombreuses études sont réalisées afin de mettre en place des systèmes de communication dronique destinés à des applications non seulement militaires mais aussi civiles. Pour le moment, les règles d'intégration des drones commerciaux dans l’espace aérien doivent encore être définies et le principal enjeu occupation est d'assurer une communication fiable et sécurisée. Cette thèse s’inscrit dans ce contexte de communication. Motivée par la croissance rapide du nombre des drones et par les nouvelles générations des drones commandés par satellite, la thèse vise à étudier les différents liens possibles qui relient le drone aux autres composants du système de communication. Trois principaux liens sont à mettre en place : le lien de contrôle, le lien de retour et le lien de mission. En raison de la rareté des ressources fréquentielles déjà allouées pour les futurs systèmes droniques, l'efficacité spectrale devient un paramètre crucial pour leur déploiement à grande échelle. Afin de mettre en place un système de communication par drones spectralement efficace, une bonne compréhension des canaux de transmission pour chacune des trois liaisons est indispensable, ainsi qu’un choix judicieux de la forme d’onde. Cette thèse commence par étudier les canaux de propagation pour chaque liaison : canaux de type muti-trajets avec ligne de vue directe, dans un contexte d’utilisation de drones à moyenne altitude et longue endurance (drones MALE). L’objectif de cette thèse est de proposer de nouveaux algorithmes de réception permettant d’estimer et égaliser ces canaux de propagation muti-trajets. Les méthodes proposées dépendent du choix de la forme d’onde. Du fait de la présence d’un lien satellite, les formes d’onde considérées sont de type mono-porteuse (avec un faible facteur de crête) : SC et EW-SCOFDM. L’égalisation est réalisée dans le domaine temporel (SC) ou fréquentiel (EW-SC-OFDM). L'architecture UAV prévoit l'implantation de deux antennes placées aux ailes. Ces deux antennes peuvent être utilisées pour augmenter le gain de diversité (gain de matrice de canal). Afin de réduire la complexité de l'égalisation des canaux, la forme d'onde EW-SC-OFDM est proposée et étudiée dans un contexte muti-antennes, dans le but d'améliorer l'endurance de l'UAV et d'accroître l'efficacité spectrale, une nouvelle technique de modulation est considérée: Modulation spatiale ( SM). Dans SM, les antennes de transmission sont activées en alternance. L'utilisation de la forme d'onde EW-SC-OFDM combinée à la technique SM nous permet de proposer de nouvelles structures modifiées qui exploitent l’étalement spectrale pour mieux protéger des bits de sélection des antennes émettrices et ainsi améliorer les performances du système. / Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances.
|
2 |
Faster than Nyquist transceiver design : algorithms for a global transmission-reception enhancement / Transmettre l'information au-delà de la cadence de Nyquist : algorithmes de transmission et réception et optimisation globaleLahbabi, Naila 22 June 2017 (has links)
La croissance exponentielle du trafic de données sans fils, causée par l'Internet mobile et les smartphones, contraint les futurs systèmes radio à inclure des modulations/formes d'ondes plus avancées offrant un débit plus élevé et une utilisation efficace des ressources spectrales. Les transmissions dites Faster-Than-Nyquist (FTN), introduites en 1975, sont parmi les meilleurs candidates pour répondre à ces besoins. En transmettant les symboles à une cadence plus rapide que celle définie par le critère de Nyquist, FTN peut théoriquement augmenter le débit mais en introduisant des interférences en contrepartie. Dans cette thèse, nous explorons le concept des transmissions FTN à travers un canal AWGN (Additive White Gaussian Noise) dans le contexte des modulations OFDM/OQAM (Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation).L'objectif principal de cette thèse est de présenter un système OFDM/OQAM qui permet de transmettre l'information au-delà de la cadence de Nyquist tout en tenant en compte la complexité globale du système. Tout d'abord, nous proposons une nouvelle implémentation efficace des systèmes OFDM/OQAM appliquant le concept FTN, désignée ici par FTN-OQAM, qui garde la même complexité que les systèmes OFDM/OQAM et qui permet un gain en débit très proche du gain théorique. Vu que la condition de Nyquist n'est plus respectée, le signal transmis est maintenant perturbé par des interférences. Pour remédier à ce problème, nous proposons un récepteur basé sur le principe de l'égalisation linéaire sous le critère minimum erreur quadratique moyenne avec annulation d'interférences appelé MMSE LE-IC. Le but de notre système est d'augmenter le débit de transmission, ce qui signifie que des constellations d'ordres élevés seront ciblées. Dans ce contexte, le MMSE LE-IC, dont la complexité est indépendante de la constellation, représente un bon compromis entre efficacité et complexité. Puisque la modulation OFDM/OQAM utilise différents types de formes d'ondes, nous proposons pour plusieurs d'entre elles un algorithme pour déterminer la valeur minimale du facteur d'accélération, en fonction de l'ordre de constellation, qui apporte un gain en efficacité spectrale tout en gardant les mêmes performances que les systèmes respectant le critère de Nyquist à un SNR fixé. Ensuite, nous étudions l'amélioration du traitement itératif de l'émetteur-récepteur. La méthode proposée consiste à combiner un précodeur avec le système FTN-OQAM afin de réduire les interférences causées par du FTN à l'émission. Nous proposons un modèle de précodage dispersé, car il est difficile de précoder conjointement tous les symboles transmis. Nous présentons trois familles de précodeurs avec les récepteurs correspondants. En outre, nous modifions différents blocs de l'émetteur FTN-OQAM tels que le codage canal, le mappage des bits et le mappage des symboles afin d'améliorer davantage le transmetteur FTN-OQAM. Les résultats présentés révèlent le potentiel important des systèmes proposés. / The exponential growth of wireless data traffic driven by mobile Internet and smart devices constrains the future radio systems to include advanced modulations/waveforms offering higher data rates with more efficient bandwidth usage. One possibility is to violate the well known Nyquist criterion by transmitting faster than the Nyquist rate, i.e., using a technique also known as Faster-Than-Nyquist (FTN) signaling. Nyquist-based systems have the advantage of simple transmitter and receiver architectures at the detriment of bandwidth efficiency. The idea of signaling beyond the Nyquist rate to trade the interference-free transmission for more throughput goes back to 1975. In this dissertation, we investigate the concept of FTN signaling over Additive White Gaussian Noise (AWGN) channel in the context of Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation OFDM/OQAM modulation.The main objective of our work is to present an OFDM/OQAM system signaling faster than the Nyquist one and explore its potential rate improvement while keeping under consideration the overall system complexity. First, we propose a new efficient FTN implementation of OFDM/OQAM systems, denoted by FTN-OQAM, that has the same complexity as OFDM/OQAM systems, while approaching very closely the FTN theoretical rate improvement. As the Nyquist condition is no longer respected, severe interference impacts the transmitted signals. To deal with the introduced interferences, we propose a turbo-like receiver based on Minimum Mean Square Error Linear Equalization and Interference Cancellation, named MMSE LE-IC. The aim of our system is to boost the transmission rate, which means that high constellation orders will be targeted. In this respect, the MMSE LE-IC, whose complexity is independent of the constellation, turns out to be a good candidate. Since OFDM/OQAM modulation can be equipped with different types of pulse shapes, we propose an algorithm to find, for different constellation orders, the minimum achieved FTN packing factor for various pulse shapes. Then, we aim at improving the iterative processing of the introduced transceiver. The proposed method involves combining a precoder with the FTN-OQAM system in order to remove FTN-induced interference at the transmitter. We also present a sparse precoding pattern as it is difficult to jointly precode all the transmitted symbols. We introduce three families of precoders along with the corresponding receivers. Furthermore, we propose several modifications of the FTN-OQAM transmitter concerning different blocks such as channel coding, bits mapping and symbols mapping to further enhance the FTN-OQAM transceiver design. Presented results reveal the significant potential of the proposed methods.
|
3 |
Achievable Rate and Modulation for Bandlimited Channels with Oversampling and 1-Bit Quantization at the ReceiverBender, Sandra 09 December 2020 (has links)
Sustainably realizing applications of the future with high performance demands requires that energy efficiency becomes a central design criterion for the entire system. For example, the power consumption of the analog-to-digital converter (ADC) can become a major factor when transmitting at large bandwidths and carrier frequencies, e.g., for ultra-short range high data rate communication. The consumed energy per conversion step increases with the sampling rate such that high resolution ADCs become unfeasible in the sub-THz regime at the very high sampling rates required. This makes signaling schemes adapted to 1-bit quantizers a promising alternative. We therefore quantify the performance of bandlimited 1-bit quantized wireless communication channels using techniques like oversampling and faster-than-Nyquist (FTN) signaling to compensate for the loss of achievable rate.
As a limiting case, we provide bounds on the mutual information rate of the hard bandlimited 1-bit quantized continuous-time – i.e., infinitely oversampled – additive white Gaussian noise channel in the mid-to-high signal-to-noise ratio (SNR) regime. We derive analytic expressions using runlength encoded input signals. For real signals the maximum value of the lower bound on the spectral efficiency in the high-SNR limit was found to be approximately 1.63 bit/s/Hz.
Since in practical scenarios the oversampling ratio remains finite, we derive bounds on the achievable rate of the bandlimited oversampled discrete-time channel. These bounds match the results of the continuous-time channel remarkably well. We observe spectral efficiencies up to 1.53 bit/s/Hz in the high-SNR limit given hard bandlimitation. When excess bandwidth is tolerable, spectral efficiencies above 2 bit/s/Hz per domain are achievable w.r.t. the 95 %-power containment bandwidth. Applying the obtained bounds to a bandlimited oversampled 1-bit quantized multiple-input multiple-output channel, we show the benefits when using appropriate power allocation schemes.
As a constant envelope modulation scheme, continuous phase modulation is considered in order to relieve linearity requirements on the power amplifier. Noise-free performance limits are investigated for phase shift keying (PSK) and continuous phase frequency shift keying (CPFSK) using higher-order modulation alphabets and intermediate frequencies. Adapted waveforms are designed that can be described as FTN-CPFSK. With the same spectral efficiency in the high-SNR limit as PSK and CPFSK, these waveforms provide a significantly improved bit error rate (BER) performance. The gain in SNR required for achieving a certain BER can be up to 20 dB. / Die nachhaltige Realisierung von zukünftigen Übertragungssystemen mit hohen Leistungsanforderungen erfordert, dass die Energieeffizienz zu einem zentralen Designkriterium für das gesamte System wird. Zum Beispiel kann die Leistungsaufnahme des Analog-Digital-Wandlers (ADC) zu einem wichtigen Faktor bei der Übertragung mit großen Bandbreiten und Trägerfrequenzen werden, z. B. für die Kommunikation mit hohen Datenraten über sehr kurze Entfernungen. Die verbrauchte Energie des ADCs steigt mit der Abtastrate, so dass hochauflösende ADCs im Sub-THz-Bereich bei den erforderlichen sehr hohen Abtastraten schwer einsetzbar sind. Dies macht Signalisierungsschemata, die an 1-Bit-Quantisierer angepasst sind, zu einer vielversprechenden Alternative. Wir quantifizieren daher die Leistungsfähigkeit von bandbegrenzten 1-Bit-quantisierten drahtlosen Kommunikationssystemen, wobei Techniken wie Oversampling und Faster-than-Nyquist (FTN) Signalisierung eingesetzt werden, um den durch Quantisierung verursachten Verlust der erreichbaren Rate auszugleichen.
Wir geben Grenzen für die Transinformationsrate des Extremfalls eines strikt bandbegrenzten 1-Bit quantisierten zeitkontinuierlichen – d.h. unendlich überabgetasteten – Kanals mit additivem weißen Gauß’schen Rauschen bei mittlerem bis hohem Signal-Rausch-Verhältnis (SNR) an. Wir leiten analytische Ausdrücke basierend auf lauflängencodierten Eingangssignalen ab. Für reelle Signale ist der maximale Wert der unteren Grenze der spektralen Effizienz im Hoch-SNR-Bereich etwa 1,63 Bit/s/Hz.
Da die Überabtastrate in praktischen Szenarien endlich bleibt, geben wir Grenzen für die erreichbare Rate eines bandbegrenzten, überabgetasteten zeitdiskreten Kanals an. Diese Grenzen stimmen mit den Ergebnissen des zeitkontinuierlichen Kanals bemerkenswert gut überein. Im Hoch-SNR-Bereich sind spektrale Effizienzen bis zu 1,53 Bit/s/Hz bei strikter Bandbegrenzung möglich. Wenn Energieanteile außerhalb des Frequenzbandes tolerierbar sind, können spektrale Effizienzen über 2 Bit/s/Hz pro Domäne – bezogen auf die Bandbreite, die 95 % der Energie enthält – erreichbar sein.
Durch die Anwendung der erhaltenen Grenzen auf einen bandbegrenzten überabgetasteten 1-Bit quantisierten Multiple-Input Multiple-Output-Kanal zeigen wir Vorteile durch die Verwendung geeigneter Leistungsverteilungsschemata.
Als Modulationsverfahren mit konstanter Hüllkurve betrachten wir kontinuierliche Phasenmodulation, um die Anforderungen an die Linearität des Leistungsverstärkers zu verringern. Beschränkungen für die erreichbare Datenrate bei rauschfreier Übertragung auf Zwischenfrequenzen mit Modulationsalphabeten höherer Ordnung werden für Phase-shift keying (PSK) and Continuous-phase frequency-shift keying (CPFSK) untersucht. Weiterhin werden angepasste Signalformen entworfen, die als FTN-CPFSK beschrieben werden können. Mit der gleichen spektralen Effizienz im Hoch-SNR-Bereich wie PSK und CPFSK bieten diese Signalformen eine deutlich verbesserte Bitfehlerrate (BER). Die Verringerung des erforderlichen SNRs zur Erreichung einer bestimmten BER kann bis zu 20 dB betragen.
|
4 |
Advanced receivers and waveforms for UAV/Aircraft aeronautical communicationsRaddadi, Bilel 03 July 2018 (has links) (PDF)
Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances.
|
5 |
[en] 1-BIT QUANTIZATION APPLIED TO CONTINUOUS PHASE MODULATION / [pt] QUANTIZAÇÃO DE 1-BIT APLICADA A SISTEMAS DE MODULAÇÃO DE FASE CONTÍNUARODRIGO ROLIM MENDES DE ALENCAR 19 November 2020 (has links)
[pt] Eficiência energética e espectral são características importantes para comunicações militares e internet das coisas (IoT). Nesta tese, métodos e sistemas de quantização de 1-bit com modulação de fase contínua (CPM) são estudados e propostos para resolver as necessidades de sistemas de comunicações modernos
com baixo consumo energético. Nesse contexto, o método de superamostragem em relação a duração de um símbolo é promissor, pois a informação está contida ao longo da transição de fase de sinais CPM, que não são estritamente limitados em banda. Consequentemente, a perda de taxa alcançável causada pela quantização de 1-bit pode ser reduzida consideravelmente, até mesmo para esquemas com maior ordem de modulação. Este estudo investiga diferentes abordagens para melhorar o desempenho do modelo de sistema proposto. Um esquema de codificação de canal é projetado com mapeamento de bits adaptado ao problema de quantização grosseira, fazendo uso de um soft-in soft-out (SISO) turbo receiver. Formas de onda CPM com duração de símbolo significamente menor que o inverso da banda do sinal são propostas, nomeadas de faster-than-Nyquist CPM. Um fator maior de superamostragem é aplicado com uma estratégia de seleção de amostras em um modelo de amostragem adaptativa. Finalmente, resultados numéricos confirmam melhor desempenho em taxa de erro de bit, eficiência espectral e taxa alcançável para os métodos propostos, em comparação às técnicas recentemente utilizadas. / [en] Energy and spectral efficiency are appealing features for military communications and internet of things (IoT). On this thesis, systems and schemes with 1-bit quantization and continuous phase modulation (CPM) are studied and proposed to address the needs for modern and power efficient communications. In this context, oversampling with respect to the symbol duration is promising because the information is conveyed in the phase transitions of the CPM signals, which are not strictly bandlimited. With this, the loss in achievable rate caused by the coarse quantization can be greatly reduced, even for higher order modulation schemes. This study investigates different approaches to enhancing the performance of the proposed system model. A channel coding scheme is designed with a tailored bit mapping, by means of employing a soft-in soft-out (SISO) turbo receiver. CPM waveforms with symbol durations significantly shorter than the inverse of the signal bandwidth are proposed, termed faster-than-Nyquist CPM. Higher oversampling is applied with a sample selection strategy for a nonuniform adaptive oversampling model. Finally, numerical results confirm better performance on bit error rate, spectral efficiency and achievable rate for the proposed methods in comparison with state of the art techniques.
|
6 |
[en] ADVANCED TRANSMIT PROCESSING FOR MIMO DOWNLINK CHANNELS WITH 1-BIT QUANTIZATION AND OVERSAMPLING AT THE RECEIVERS / [pt] PROCESSAMENTO AVANÇADO DE TRANSMISSÃO PARA CANAIS DE DOWNLINK MIMO COM QUANTIZAÇÃO DE 1 BIT E SOBREAMOSTRAGEM NOS RECEPTORES10 September 2020 (has links)
[pt] IoT refere-se a um sistema de dispositivos de computação inter-relacionados
que visa transferir dados através de uma rede sem exigir interação humanohumano
ou humano-para-computador. Esses sistemas de comunicação modernos,
exigem restrições de baixo consumo de energia e baixa complexidade
no receptor. Nesse sentido, o conversor analógico-digital representa
um gargalo para o desenvolvimento das aplicações dessas novas tecnologias,
pois apresenta alto consumo de energia devido à sua alta resolução. A pesquisa
realizada em relação aos conversores analógico-digitais com quantização
grosseira mostrou que esses dispositivos são promissores para o projeto
de futuros sistemas de comunicação. Para equilibrar a perda de informações,
devido à quantização grosseira, a resolução no tempo é aumentada através
da superamostragem. Esta tese considera um sistema com quantização de
1 bit e superamostragem no receptor com um canal de downlink MIMO
multiusuário com banda ilimitada e apresenta, como principal contribuição,
a nova modulação de cruzamento de zeros que implica que a informação
é transmitida no instante de tempo zero-crossings. Este método é usado
para a pré-codificação temporal através da otimização do design da forma
de onda para dois pré-codificadores diferentes, a maximização temporal da
distância mínima até o limiar de decisão com forçamento a zero espacial e
a pré-codificação MMSE no espácio-temporal. Os resultados da simulação
mostram que a abordagem de cruzamento de zeros proposta supera o estado
da arte em termos da taxa de erro de bits para os dois pré-codificadores
estudados. Além disso, essa nova modulação reduz a complexidade computacional,
permite dispositivos de complexidade muito baixa e economiza
recursos de banda em comparação com o método mais avançado. Análises
adicionais mostram que a abordagem do cruzamento de zeros é benéfica em
comparação com o método mais avançado em termos de maior distância
mínima até o limiar de decisão e menor MSE para sistemas com limitações
de banda. Além disso, foi desenvolvido um esquema de mapeamento de bits
para modulação de cruzamento por zero, semelhante à codificação de Gray
para reduzir ainda mais a taxa de erro de bits. / [en] The IoT refers to a system of interrelated computing devises which aims to
transfer data over a network without requiring human-to-human or humanto-
computer interaction. This Modern communication systems demand restrictions
of low energy consumption and low complexity in the receiver. In
this sense, the analog-to-digital converter represents a bottleneck for the
development of the applications of these new technologies since it has a
high energy consumption due to its high resolution. The research carried
out concerning to the analog-to-digital converters with coarse quantization
has shown that such devices are promising for the design of future communication
systems. To balance the loss of information, due to the coarse
quantization, the resolution in time is increased through oversampling. This
thesis considers a system with 1-bit quantization and oversampling at the
receiver with a bandlimited multiuser MIMO downlink channel and introduces,
as the main contribution, the novel zero-crossing modulation which
implies that the information is conveyed within the time instant of the
zero-crossings. This method is used for the temporal precoding through the
waveform design optimization for two different precoders, the temporal maximization
of the minimum distance to the decision threshold with spatial
zero forcing and the space-time MMSE precoding. The simulation results
show that the proposed zero-crossing approach outperforms the state-of-theart
in terms of the bit error rate for both precoders studied. In addition,
this novel modulation reduces the computational complexity, allows very low
complexity devices and saves band resources in comparison to the state-ofthe-
art method. Additional analyses show that the zero-crossing approach
is beneficial in comparison to the state-of-the-art method in terms of greater
minimum distance to the decision threshold and lower MSE for systems
with band limitations. Moreover, it was devised a bit-mapping scheme for
zero-crossing modulation, similar to Gray-coding to further reduce the bit
error rate.
|
Page generated in 0.0619 seconds