• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 27
  • 26
  • 14
  • 13
  • 11
  • 6
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 331
  • 104
  • 90
  • 77
  • 67
  • 67
  • 59
  • 56
  • 53
  • 49
  • 41
  • 41
  • 39
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Design of a Catalytic Combustor for Pure Methanol and HTPEM Fuel Cell Anode Waste Gas

Bell, Andrew James Stewart Blaney 24 July 2012 (has links)
Transportation sector CO2 emissions contribute to global warming. Methanol generated from clean energy sources has been proposed as a transportation fuel as an alternative to gasoline or diesel to reduce emissions. Catalytic methanol-steam reformers can be combined with high temperature polymer electrolyte membrane (HTPEM) fuel cell systems to create compact electrical power modules which run on liquid methanol. These modules combine the efficiency of a fuel cell system with the convenience of using a traditional, liquid hydrocarbon fuel. Catalytic methanol-steam reformers require a heat source as the methanol-steam reforming process is endothermic. The heat source for this system will initially be from the catalytic combustion of either pure methanol, during startup, or from HTPEM fuel cell anode waste gas during system operation. Efficient use of catalyst requires effective premixing of the fuel and air. This study will investigate parameters affecting premixing and their effect on temperature distributions and emissions.
62

Insights into the morphological changes undergone by the anode in the lithium sulphur battery system

Yalamanchili, Anurag January 2014 (has links)
In this thesis, the morphological changes of the anode surface in lithium sulphur cell, during early cycling, were simulated using symmetrical lithium electrode cells with dissolved polysulphides (PS) in the electrolyte. Electron microscopy (SEM) was used as the principal investigation technique to study and record the morphological changes. The resulting images from the SEM were analysed and discussed. The initial surface structure of the lithium anode largely influenced the ensuing morphological changes taking place through lithium dissolution (pits) and lithium deposition (dendrites) during discharge and charge respectively. The rate of lithium dissolution and deposition was found to be linearly proportional to the current density applied to the cell and the effect of cycling on the anode was proportional to the total charge of the cell in general in agreement with the expected reaction. The effect of self-discharge on the anode was also studied using photoelectron spectroscopy (XPS) in tandem with SEM. The results indicated that self-discharge, occurring in the form of corrosion of the anode SEI by PS reduction, was influenced by the altered morphology of the cell after cycling. The findings presented in this project can be understood as a preliminary description for the morphological changes in the anode and their influence in the performance of lithium sulphur battery, which can be further investigated by more advanced methods. / <p>Joint collaboration project between Scania CV AB and Uppsala University.</p>
63

Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen Sensors

Penwell, William 12 March 2014 (has links)
This work focused on the study of three independent projects involving perovskite oxide materials and their applications as solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors. The underlying theme is the versatility and tune-ability of the perovskite structure. Reactivity and conductivity (ionic as well as electronic) are modified to optimize performance in a specific application. The effect of Ce doping on the structure and the conductivity of BaFeO3 perovskite materials is investigated and the resulting materials are applied as oxygen sensors. The new perovskite family, Ba1-xCexFeO3-δ (x=0, 0.01, 0.03, and 0.05), was prepared via a sol-gel method. Powder XRD indicates a hexagonal structure for BaFeO3 with a change to a cubic perovskite upon Cerium doping at the A site. The solubility limit of Ce at the A site was experimentally determined to be between 5-7 mol %. Bulk, electronic and ionic conductivities of BaFeO3-δ and Ba0.95Ce0.05FeO3-δ were measured in air at temperatures up to 1000˚C. Cerium doping increases the conductivity throughout the entire temperature range with a more pronounced effect at higher temperatures. At 800˚C the conductivity of Ba0.95Ce.05FeO3-δ reaches 3.3 S/cm. Pellets of Ba0.95Ce.05FeO3-δ were tested as gas sensors at 500 and 700˚C and show a linear, reproducible response to O2. Promising perovskite anodes have been tested in high sulfur fuel feeds. A series of perovskite solid oxide fuel cell (SOFC) anode materials: Sm0.95Ce0.05FeO3-δ, Sm0.95Ce0.05Fe0.97Ni0.03O3-δ and Sm0.95Ce0.05Fe0.97Co0.03O3-δ have been tested for sulfur tolerance at 500°C. The introduction of the extreme 5% H2S enhances the performance of these anodes, verified by EIS and CA experiments. Post mortem analyses indicate that the performance XII enhancement arises from the partial sulfidation of the anode, leading to the formation of FeS2, Sm3S4 and S on the perovskite surface. Testing in lower concentrations of sulfur, more common in sour fuels, 0.5% H2S, also enhances the performance of these materials. The SCF-Co anode shows promising stability and an increase in exchange current density, io, from 13.72 to 127.02 mA/cm2 when switching from H2 to 0.5% H2S/99.5% H2 fuel composition. Recovery tests performed on the SCF-Co anode conclude that the open cell voltage (OCV) and power density of these cells recover within 4 hours of H2S removal. We conclude that the formation of metal sulfide species is only partially reversible, yielding an anode material with an overall lower Rct upon switching back to pure H2. Combining their performance in sulfur containing fuels with their previously reported coke tolerance makes these perovskites especially attractive as low temperature SOFC anodes in sour fuels. A new perovskite family Ba1-xYxMoO3 (x=0-0.05) has been investigated in regards to electrical conductivity and performance as IT-SOFC anode materials for the oxidation of H2. Refinement of p-XRD spectra as well as SEM imaging conclude that the solubility limit of Y doping at the A site is 5 mol%, beyond which Y2O3 segregation occurs. The undoped BaMoO3 sample has a colossal room temperature conductivity of 2500 S/cm in dry H2. All materials maintain metallic conductivity in the temperature range of 25-1000°C with resistance increasing with Y doping. The Ba1-xYxMoO3 (x=0, 0.05) materials exhibit good performance as SOFC anode materials between 500-800°C, with Rct values at 500°C in dry H2 of 3.15 and 6.33 ohm*cm2 respectively. The catalytic performance of these perovskite anodes is directly related to electronic conductivity, as concluded from composite anode performance.
64

Einsatz von Kohlenwasserstoffen in der Hochtemperatur-Bennstoffzelle SOFC

Fouquet, Daniel January 2005 (has links)
Zugl.: Karlsruhe, Univ., Diss.
65

Conductive polymeric binder for lithium-ion battery anode

January 2015 (has links)
abstract: Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle is performed under current of 0.1 C. / Dissertation/Thesis / Masters Thesis Materials Science and Engineering 2015
66

Doped Perovskite Materials for Solid Oxide Fuel Cell (SOFC) Anodes and Electrochemical Oxygen Sensors

Penwell, William January 2014 (has links)
This work focused on the study of three independent projects involving perovskite oxide materials and their applications as solid oxide fuel cell (SOFC) anodes and electrochemical oxygen sensors. The underlying theme is the versatility and tune-ability of the perovskite structure. Reactivity and conductivity (ionic as well as electronic) are modified to optimize performance in a specific application. The effect of Ce doping on the structure and the conductivity of BaFeO3 perovskite materials is investigated and the resulting materials are applied as oxygen sensors. The new perovskite family, Ba1-xCexFeO3-δ (x=0, 0.01, 0.03, and 0.05), was prepared via a sol-gel method. Powder XRD indicates a hexagonal structure for BaFeO3 with a change to a cubic perovskite upon Cerium doping at the A site. The solubility limit of Ce at the A site was experimentally determined to be between 5-7 mol %. Bulk, electronic and ionic conductivities of BaFeO3-δ and Ba0.95Ce0.05FeO3-δ were measured in air at temperatures up to 1000˚C. Cerium doping increases the conductivity throughout the entire temperature range with a more pronounced effect at higher temperatures. At 800˚C the conductivity of Ba0.95Ce.05FeO3-δ reaches 3.3 S/cm. Pellets of Ba0.95Ce.05FeO3-δ were tested as gas sensors at 500 and 700˚C and show a linear, reproducible response to O2. Promising perovskite anodes have been tested in high sulfur fuel feeds. A series of perovskite solid oxide fuel cell (SOFC) anode materials: Sm0.95Ce0.05FeO3-δ, Sm0.95Ce0.05Fe0.97Ni0.03O3-δ and Sm0.95Ce0.05Fe0.97Co0.03O3-δ have been tested for sulfur tolerance at 500°C. The introduction of the extreme 5% H2S enhances the performance of these anodes, verified by EIS and CA experiments. Post mortem analyses indicate that the performance XII enhancement arises from the partial sulfidation of the anode, leading to the formation of FeS2, Sm3S4 and S on the perovskite surface. Testing in lower concentrations of sulfur, more common in sour fuels, 0.5% H2S, also enhances the performance of these materials. The SCF-Co anode shows promising stability and an increase in exchange current density, io, from 13.72 to 127.02 mA/cm2 when switching from H2 to 0.5% H2S/99.5% H2 fuel composition. Recovery tests performed on the SCF-Co anode conclude that the open cell voltage (OCV) and power density of these cells recover within 4 hours of H2S removal. We conclude that the formation of metal sulfide species is only partially reversible, yielding an anode material with an overall lower Rct upon switching back to pure H2. Combining their performance in sulfur containing fuels with their previously reported coke tolerance makes these perovskites especially attractive as low temperature SOFC anodes in sour fuels. A new perovskite family Ba1-xYxMoO3 (x=0-0.05) has been investigated in regards to electrical conductivity and performance as IT-SOFC anode materials for the oxidation of H2. Refinement of p-XRD spectra as well as SEM imaging conclude that the solubility limit of Y doping at the A site is 5 mol%, beyond which Y2O3 segregation occurs. The undoped BaMoO3 sample has a colossal room temperature conductivity of 2500 S/cm in dry H2. All materials maintain metallic conductivity in the temperature range of 25-1000°C with resistance increasing with Y doping. The Ba1-xYxMoO3 (x=0, 0.05) materials exhibit good performance as SOFC anode materials between 500-800°C, with Rct values at 500°C in dry H2 of 3.15 and 6.33 ohm*cm2 respectively. The catalytic performance of these perovskite anodes is directly related to electronic conductivity, as concluded from composite anode performance.
67

Mitigating Polysulfide Shuttling in Li-S Battery

Li, Mengliu 16 November 2019 (has links)
The energy source shortage has become a severe issue, and solving the problem with renewable and sustainable energy is the primary trend. Among the new generation energy storage, lithium-sulfur (Li-S) battery stands out for its low cost, high theoretical capacity (1,675 mAh g-1), and environmentally friendly properties. Intensive researches have been focusing on this system and significant improvement has been achieved. However, several problems still need to be resolved for its practical application, especially for the “shuttle effect” issue coming from the dissolved intermediate polysulfides, which could cause rapid capacity decay and low Coulombic efficiency (CE). Several methods are proposed to eliminate this issue, including using interlayers, modifying separators, and protecting the lithium anode. A carbon interlayer is first introduced to compare the function of the graphene and carbon nanotubes (CNTs), while the CNTs performs better with its higher conductivity and 3D network structure. The following study is conducted based on this finding. A more efficient method is to modify the separator with functional materials. 1) The dissolved polysulfide (Sn2-) could be repelled by electrostatic forces. With the Poly (styrene sulfonate) (PSS), the separator could function as an anion barrier to the intermediate polysulfides. 2D ultra-thin zinc benzimidazolate coordination polymer has the OH- functional groups and works with the same mechanism. 2) A novel covalent organic framework (COF) has a relatively small pore size, which can block the polysulfide and restrain them at the cathode side. 3) Metal-organic framework (MOF) materials have the adjustable pore size and structure, which can absorb and trap polysulfides within their cavities. Moreover, the dense stacking of the MOF particles creates a physical blocking for the polysulfides, which efficiently suppresses the diffusion process. Protection of the lithium surface directly with an artificial layer or a solid electrolyte interphase (SEI) can inhibit the polysulfide deposition and suppress the lithium dendrite. A polyvinylidene difluoride (PVDF) membrane is used as an artificial film on lithium anode, which could greatly enhance the battery cyclability and CE. Future work will be conducted based on this concept, especially building an artificial SEI.
68

Synthesis of 2D materials and their applications in advanced sodium ion batteries

Zhang, Fan 22 March 2022 (has links)
Sodium-ion batteries (SIBs) are rechargeable batteries analogous to lithium-ion batteries but use sodium ions (Na+) as the charge carriers. They are considered a promising alternative for lithium-ion batteries (LIBs) in renewable large-scale energy storage applications due to their similar electrochemical mechanisms and abundant sodium resources. Two-dimensional (2D) materials, with atomic or molecular thickness and large lateral lengths, have emerged as important functional materials due to their unique structures and excellent properties. These 2D nanosheets have been highly studied as sodium-ion battery anodes. They have large interlayer spacing, which can effectively buffer the big volume expansion and prevent electrode collapse during the charge-discharge process. Different strategies such as preparing composites, heterostructures, expanded structures, and chemical functionalization can greatly improve cycling stability and lead to high reversible capacity. In this dissertation, state-of-the-art SIB based on 2D material electrodes will be presented. In particular, Tin-based 2D materials and laser-scribed graphene anodes are discussed. Different strategies involving engineering both synthesis methods, intrinsic properties of materials, and device architecture are used to optimize the battery performance.
69

Bioaugmentation as a Strategy to Engineer the Anodic Biofilm Assembly in Microbial Electrolysis Cell Fed with Wastewater

Bader, Mohammed A. 03 1900 (has links)
Microbial electrolysis cell (MEC) system is a potential technology that could treat wastewater while simultaneously generating H2 (green energy). MEC's electroactive bacteria (EAB) are essential microbes responsible for oxidizing organic pollutants (such as acetate) in wastewater using an electrogenesis process. Since EABs comprise the core of MECs, they are essential for maintaining functional stability (Coulombic efficiency (CE), current density, and pollutant removal) of MECs. The cause of EAB becoming dominant at the anode of MECs fed with wastewater is still unclear. Furthermore, efficient EAB are typically not detected in wastewater, and when they are present their abundance is low, which affects their early colonization on the anode and subsequent growth into a mature biofilm. This study investigated bioaugmentation as a strategy to drive the assembly of functionally redundant anode EAB biofilms to improve MEC performance. Two bioaugmentation strategies (Conditions 2 and 3) with known EABs (G. sulfurreducens and D. acetexigens) were tested during the startup of MECs. Meanwhile, control MEC reactors (Condition 1) were operated with only wastewater as the sole source of inoculum to compare the anodic biofilm assembly and system performance with the bioaugmented reactors. Equal number of G. sulfurreducens and D. acetexigens cells were added to the wastewater-fed MEC (10% inoculum at 2.1E+07 live cells/mL). In Condition 3, anodic-biofilm colonized G. sulfurreducens and D. acetexigens was used as anode in wastewater fed MECs. Using single-chambered MEC reactors, the bioaugmented MECs (Condition 2 and 3) performed more efficiently than the non-bioaugmented (Condition 1) MECs. Current generation, CE and gas production were different between the three conditions tested (Condition 3 > Condition 2 > Condition 1). Analysis of 16S rRNA gene sequencing of anodic biofilm indicates revealed that the bacterial communities was not affected between the tested conditions. However, the relative abundance of EABs, mainly G. sulfurreducens and D. acetexigens, was markedly influenced by bioaugmentation compared to the control reactor. The highest peak current generation (~ 1500 mA/m2), CE (70.3 ± 9%), and gas production (0.04 m3/m3/day) was observed in Condition 3. Collectively, these results provide a framework for engineering the anode microbial communities in MECs for wastewater treatment.
70

Mesoscale structural modification for anode-supported solid oxide fuel cell:Effects of corrugated structures fabricated through microextrusion printing / アノード支持型SOFCにおけるメゾスケール構造修飾:押出式マイクロ塗布法により作製した波状構造の影響

Seo, Haewon 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23192号 / 工博第4836号 / 新制||工||1755(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 吉田 英生, 教授 江口 浩一, 教授 岩井 裕 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 1.4494 seconds