• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 27
  • 26
  • 14
  • 13
  • 11
  • 6
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 331
  • 104
  • 90
  • 77
  • 67
  • 67
  • 59
  • 56
  • 53
  • 49
  • 41
  • 41
  • 39
  • 34
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Electrical Power Generation in Microbial Fuel Cells Using Carbon Nanostructure Enhanced Anodes

Lamp, Jennifer Lynn 22 September 2009 (has links)
Microbial fuel cells (MiFCs) have been suggested as a means to harness energy that is otherwise unutilized during the wastewater treatment process. MiFCs have the unique ability to treat influent waste streams while simultaneously generating power which can offset energy associated with the biological treatment of wastewater. During the oxidation of organic and inorganic wastes, microorganisms known as exoelectrogens have the ability to move electrons extracellularly. MiFCs generate electricity by facilitating the microbial transfer of these electrons from soluble electron donors in feedstocks to a solid-state anode. While MiFCs are a promising renewable energy technology, current systems suffer from low power densities which hinder their practical applicability. In this study, a novel anode design using flame-deposited carbon nanostructures (CNSs) on stainless steel mesh is developed to improve the electron transfer efficiency of electrons from microorganisms to the anode and thus the power densities achievable by MiFCs. These new anodes appear to allow for increased biomass accumulation on the anode and may aid in the direct transfer of electrons to the anode in mediatorless MiFC systems. Experiments were conducted using anaerobic biomass in single-chamber MiFCs with CNS-enhanced and untreated stainless steel anodes. Fuel cells utilizing CNS-enhanced anodes generated currents up to two orders of magnitude greater than cells with untreated metal anodes, with the highest power density achieved being 510 mW m-2. / Master of Science
82

Optimisation d'anodes microbiennes à partir de lixiviat de sol pour la conception de piles à combustible microbiennes / Optimisation of microbial anodes from soil leachate for designing microbial fuel cells

Pocaznoi, Diana 18 July 2012 (has links)
Les piles à combustible microbienne (PACMs) sont des piles capables de convertir l'énergie chimique de combustibles organiques directement en énergie électrique. Dans ces piles, l'oxydation du combustible est assurée par des micro-organismes dits "électro-actifs" qui forment des biofilms à la surface de l'anode et jouent le rôle de catalyseur des réactions électrochimiques. Les travaux qui font l'objet de ce manuscrit ont eu pour objectif d'optimiser des anodes microbiennes formées à partir de la flore bactérienne contenue dans des terreaux de jardin. Les expériences effectuées en chronoampérométrie avec un système à trois électrodes ont conduit à la première démonstration expérimentale que des densités de courant de 66 A/m2 pouvaient être obtenues en formant les anodes microbiennes sur des ultra-microélectrodes. Sur des électrodes de taille normale, la mise au point d'une nouvelle technique (polarisation retardée) pour la formation de biofilms microbiens a permis d'obtenir des densités de courant de 9,4 A/m2 après seulement 3 jours de polarisation tandis que le protocole conventionnel demandait quelques semaines pour obtenir 6 à 8 A/m2. L'étude de différents matériaux d'électrode a indiqué que l'acier inoxydable qui permit d'atteindre des densités de courant de 21 A/m2 présente un grand intérêt pour la formation de biofilms électro-actifs. En effet, les électrodes en tissu de carbone ont assuré jusqu'à 34,3 A/m2, voire 50 A/m2 en anaérobiose, mais elles bénéficiaient d'une structure tridimensionnelle. La mise en oeuvre des anodes microbiennes optimisées dans les PACMs a assuré la production de 6,0 W/m2. L'élaboration d'un nouveau prototype intégrant un système de cathode amovible a permis d'allonger la durée de vie initiale de la pile de 2 semaines à plus de 2 mois / Microbial fuel cells (MFC) are devices capable to convert chemical energy from organic fuels directly into electrical energy. In these cells, the fuel oxidation is provided by micro-organisms known as "electro-active"; these microorganism form biofilms on the surface of the anode and act as a catalyst for electrochemical reactions. The aim of this work was the optimisation of microbial anodes formed from bacterial flora contained in garden soils. The chronoamperometric experiments performed in a three-electrode system showed for the very first time in these systems that current densities of 66 A/m2 could be obtained by forming microbial anodes on ultra-microelectrodes. On electrode of normal size, the development of a new technique (delayed polarisation) for designing microbial biofilms produced current densities of 9.4 A/m2 after 3 days of polarisation, while the conventional protocol asked a few weeks for obtaining 6 to 8 A/m2. The study of different electrode materials indicated that stainless steel allowed reaching current densities up to 21 A/m2, which makes it a suitable candidate for designing electro-active biofilms. Indeed, the carbon electrodes provided up to 34.4 A/m2, even 50 A/m2 in anaerobic conditions, but the electrodes benefited of a three-dimensional structure contrasting the stainless steel electrode. The use of optimised microbial anodes in MFCs insured the production of 6 W/m2. In addition, the development of a new prototype containing a removable cathode allowed extending the lifetime of the initial MFC from 2 weeks to over 2 months
83

Synthèse de nanocomposites cœur-coquille silicium carbone par pyrolyse laser double étage : application à l’anode de batterie lithium-ion / Core-shell silicon carbon nanocomposites synthesis by double stage laser pyrolysis : application as anode material in lithium-ion battery

Sourice, Julien 22 September 2015 (has links)
Le remplacement du carbone graphite, matériau commercial dans les batteries au lithium ion, par du silicium est un axe privilégié afin d’augmenter la capacité des anodes au sein de ces accumulateurs. En revanche, le silicium micrométrique souffre de puissants effets de dégradation au cours du cyclage. L’expansion volumique des particules lors de la formation des alliages lithiés et la réduction des électrolytes en contact avec la matière active, sous forme de produits de dégradation appelés SEI, induisent une diminution importante de la durée de vie de ces anodes. La communauté scientifique a donc émis l’idée de stabiliser le silicium en diminuant la taille des particules à l’échelle nanométrique, limitant fortement le risque de pulvérisation. De plus, le contact direct entre la matière active et les solvants peut être très largement diminué via la formation d’une coquille de carbone autour des particules de silicium. La problématique est alors la suivante : obtenir un matériau dit « cœur-coquille » à base de silicium nanométrique enrobé de carbone, à l’aide d’un procédé facilement industrialisable.Le Laboratoire Edifices Nanométriques (LEDNA) possède une grande expertise en synthèse de nanomatériaux par pyrolyse laser en phase gaz. Cette méthode de synthèse est souple, possède un rendement de production élevé et offre un contrôle important sur les conditions de réaction. Afin de répondre à la problématique posée, un nouveau réacteur de synthèse à deux étages de réaction a été développé. A l’aide de cette expérience originale, des nanomatériaux à base de silicium cristallin ont été synthétisés, ainsi que leur équivalent enrobé de carbone. Des cœurs de silicium amorphes ont également été enrobé de carbone, permettant l’obtention d’une structure cœur-coquille encore inédite dans la littérature. La microscopie révèle que les matériaux sont sous forme de chainette de particules, une structure obtenue de façon classique par les méthodes de synthèse en phase gaz mais qui se pourrait se révéler bénéfique aux propriétés de conduction électronique et ionique. Les coquilles carbonées caractérisées par spectroscopie Raman révèlent une organisation riche en liaisons sp2 mais peu graphitique. Une étude par spectroscopie des électrons Auger (AES) montre que l’homogénéité de l’enrobage carboné varie selon les matériaux, les plus petits cœurs de silicium bénéficiant d’un meilleur recouvrement. Par diffraction des neutrons, nous avons montré que le silicium amorphe enrobé est très peu sensible à l’oxydation contrairement aux autres matériaux non enrobés.Les matériaux ont été utilisés en tant que matériaux d’anode dans des batteries au lithium métal. Une étude par balayage voltamétrique a montré que les matériaux à base de silicium cristallin nécessitent plusieurs balayages avant d’être lithiés jusqu’au cœur. En revanche, le silicium amorphe enrobé subit une lithiation profonde immédiate, phénomène dont la littérature ne fait pas mention faute de pouvoir obtenir ce composite non oxydée selon les méthodes de synthèses traditionnelles. Une étude par spectroscopie d’impédance électrochimique résolue en potentiel a été réalisée afin de déterminer les mécanismes de dégradation de ces électrodes. Nous avons montré que ce phénomène est principalement entretenu par la dissolution des composés de la SEI lors de la délithiation des matériaux. De plus, l’intensité de ce phénomène de dissolution semble corrélée avec la quantité de surface de silicium potentiellement en contact avec l’électrolyte. Enfin, testés galvanostatiquement, les matériaux enrobés de carbone ont démontré des performances très supérieures au carbone graphite. Au régime élevé de 2C, difficilement accessible au matériau d’anode commerciale, le matériau amorphe enrobé a supporté près de 500 cycles en maintenant une capacité et une efficacité coulombique élevée, supérieure à 800 mAh.g-1 et 99,99%. / The replacement of carbon graphite, the commercial anode material in Li-ion batteries, by silicon is one of the most promising strategies to increase the capacity of anode in these devices. However, micrometric silicon suffers from strong degradation effect while cycling. The volume expansion of the lithiated particles and the direct contact between the active material and the solvents induce the continuous formation and pulverization of a solid electrolyte interphase (SEI) leading to the rapid fading of the capacity. Many research groups suggest decreasing the size of the particle to the nanoscale where pulverization of the particles is almost inexistent. Furthermore, the formation of a carbon shell around these silicon nanoparticles is cited as the most efficient way to isolate the material from the direct contact with the solvent. The main issue is to obtain these core shell nanocomposites with a process able to meet industrial requirement.The Nanometric Structure Laboratory (LEDNA) is experimented in the synthesis of nanomaterial thanks to the gas phase laser pyrolysis method. This versatile process is characterized by a high yield of production and permits an efficient control over the reaction parameters. In order to obtain core shell structures, a new reactor has been developed by the combination of two stages of reaction. Thanks to this original setup, crystalline silicon cores covered or not with a carbon shell were achieved in one step for the first time. Likewise, amorphous cores were covered with a carbon shell, leading to the synthesis of a novel nanocomposite. Microscopic study reveals that these materials are obtained in a chain-like structure that can be beneficial to the electronic and ionic conduction properties. The carbonaceous compound were characterized by Raman spectroscopy and appeared to be non-graphitic sp2 rich species known in the literature as basic structural units (BSU). Auger electron spectroscopy study highlights the homogeneity of the carbon covering, in particular over smaller silicon cores. Neutron diffraction showed that the amorphous silicon cores covered with carbon are protected against passive oxidation unlike bare amorphous cores.The nanocomposites were used as anode materials in lithium-metal coin cell configuration. A cyclic voltammetry study highlights that crystalline silicon cores embedded into carbon need many sweeps before their full lithiation whereas amorphous core shell nanocomposites deeply lithiated from the first sweep, a phenomena yet not described in the literature. A potential resolved electronic impedance spectroscopy technic was used to determine the main degradation process of the core shell materials. We showed that the capacity fading can be mainly attributed to SEI dissolution and reformation through cycling, obstructing the porous structure of the electrode and limiting the cyclability. Finally, galvanostatically tested the core-shell nanocomposites reveal enhanced performance compared to graphite carbon. At the high charge/discharge rate of 2C, hardly reachable to the commercial anode material, the amorphous core-shell nanocomposite was cycled up to 500 cycles while maintaining a high capacity of 800 mAh.g-1 and outstanding coulombic efficiency of 99,99 %.
84

Etude d’un grand détecteur TPC Micromegas pour l’ILC / A Large Area Micromegas TPC for Tracking at the ILC

Wang, Wenxin 24 June 2013 (has links)
Une grande ‘Chambre à Projection Temporelle’ (TPC) est un candidat pour la détection et la mesure des traces chargées auprès de l’ILC, collisionneur linéaire d’électrons et de positons de 31 km permettant d’atteindre des énergies dans le centre de masse de 250 GeV à 1 TeV. Le travail de R&D décrit dans cette thèse porte sur un type nouveau de TPC, dont la lecture est assurée par des Micromégas à anode résistive. Ce dispositif permet de répartir le signal électrique sur plusieurs carreaux, même lorsque la charge est déposée sur un seul carreau. Il permet aussi de protéger l’électronique, ce qui est utilisé dans notre prototype pour miniaturiser les cartes de lecture. Dans ce travail, des modules Micromégas ont été testés et caractérisés, dans un premier temps, en faisceau, un par un au centre de la chambre, puis 7 modules montés en même temps de façon à couvrir la surface. Egalement, des tests sur un banc équipé d’une source de ⁵⁵Fe ont permis de caractériser les 7 modules utilisés. Une résolution en position de 60 microns par ligne de carreaux est obtenue à petite distance de dérive. L’uniformité est aussi évaluée, et des distorsions pouvant atteindre environ 500 microns sont observées. L’ensemble des résultats démontre l’adéquation de ce type de lecture à la TPC pour l’ILC. La fraction de retour des ions est également mesurée à l’aide d’un détecteur de même géométrie et avec le même gaz que ceux utilisés dans ces tests, et la loi en rapport inverse des champs est validée à nouveau dans ces conditions. La même technique est appliquée à la réalisation d’un imageur neutron, consistant en une TPC Micromégas ‘plate’ précédée d’un film convertisseur de 1mm d’épaisseur. Les protons éjectés par les neutrons sont ‘suivis à la trace’ dans le volume gazeux, ce qui permet de reconstruire avec une précision meilleure que le millimètre le point d’origine du neutron. / The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e⁺e⁻ collider. The leading project for this is called ILC. The team that I joined is working on the R&D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a ⁵⁵Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion backflow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several modules with a Kalman filter algorithm. The results of these studies are given in Chapter 7. The TPC technique has been applied to neutron imaging in collaboration with the University of Lanzhou. A test using a neutron source has been carried out in China. The results are reported in Chapter 8.
85

Etude de l'anode pour la pile à combustible directe aux borohydrures / Study of the anode in direct borohydride fuel cells

Olu, Pierre-Yves 29 October 2015 (has links)
Le travail présenté dans cette thèse porte sur l'anode de la pile à combustible directe aux borohydrures (DBFC, selon l'acronyme anglais). Une première approche pour développer l'anode de la DBFC est d'étudier cette anode à l'intérieur du système global de la DBFC. Dans cette optique, des anodes composées des catalyseurs Pt/C et Pd/C ont été caractérisée en banc de test DBFC. D'autres facteurs ont aussi été étudiés, tels que la morphologie de l'anode et la stabilité des nanoparticules des catalyseurs.Le catalyseur d'anode de la DBFC doit idéalement exhiber une activité catalytique suffisante pour la réaction d'oxydation des borohydrures (BOR), tout en minimisant la production et l'échappement d'hydrogène gazeux durant la BOR. Ces aspects sont relativement difficiles à étudier en raison des nombreuses variables ne dépendant pas de l'anode dans un système DBFC réel. Une solution à ce problème consiste à isoler l'anode de la DBFC et de l'étudier en configuration demi-pile, avec un environnement d'étude mieux contrôlé. Les différentes méthodes pour évaluer un catalyseur d'anode de DBFC en demi-pile sont discutées, et des marqueurs sont proposés pour l'évaluation pertinente d'un catalyseur d'anode de DBFC par rapport aux résultats de la littérature.Une autre stratégie possible pour développer des catalyseurs adéquats d'anode de DBFC est de mieux comprendre le mécanisme de la BOR. Dans cette optique, la BOR est étudiée sur des électrodes modèles à base de platine. Chaque type d'électrode modèle permet de contrôler un paramètre précis de la surface catalytique, menant ainsi à différentes études de la BOR. La sensibilité de la BOR à la structure de surface catalytique est étudiée sur des électrodes massives de platine (polycristallin et monocristallin). L'empoisonnement de la surface active de Pt durant la BOR est étudié sur nanoparticules de Pt déposées sur substrat carbone vitreux plan. Des électrodes à trois dimensions ont également été réalisées : nanoparticules de Pt déposées sur nanofibres de carbone verticalement alignées. Le dépôt de différentes quantité de Pt a permis d'étudier l'influence de la densité en sites actifs de Pt sur la BOR. Les résultats obtenus sur ces électrodes modèles sont discutés avec ceux de la littérature, et un mécanisme pour la BOR sur Pt est proposé. Ce mécanisme est simulé en utilisant une modélisation de micro-cinétiques de type champs moyens. Les courbes simulées reproduisent les caractéristiques majeures des résultats expérimentaux. / The present work focuses on direct borohydride fuel cell (DBFC) anodes. A first approach to develop a suitable anode design for the DBFC consists in the study of the anode within the real DBFC system. In that frame, carbon-supported platinum and palladium nanoparticles are characterized and compared as anode electrocatalyst in DBFC configuration. Other variables such as the morphology of the anode and the stability of the catalyst nanoparticles are considered.The ideal DBFC anode catalyst should show a suitable electrocatalytic activity towards the borohydride oxidation reaction (BOR), without quantitative production/escape of gaseous hydrogen during the reaction. Studying these aspects is not straightforward using a real DBFC system, as the global behavior of the DBFC depends on numerous experimental variables external to the anode. In order to overcome this issue, a prospective anode catalyst can be isolated and specifically studied in half-cell configuration in a more controlled environment. The different methods possible for the evaluation of an electrocatalyst for the anode of the DBFC are discussed in this work, and benchmarks are proposed to compare a given material with the DBFC literature.Another strategy to develop suitable DBFC anode catalysts is to further understand the BOR mechanism. In that frame, the BOR is studied on model platinum-based electrodes with different levels of complexity. Bulk polycrystalline and single-crystals Pt flat electrodes enable to study the structure sensitivity of the BOR. The poisoning of the Pt active surface is investigated using Pt nanoparticles supported on flat glassy carbon substrate. Three-dimensional electrodes are also surveyed: Pt nanoparticles supported on vertically-aligned carbon nanofiber electrodes. The deposition of various amounts of Pt nanoparticles on the VACNF substrate enables to study the influence of the density of Pt active sites towards the BOR. The findings obtained using these model electrodes are gathered with previous results from the literature in order to propose a BOR mechanism on Pt. This mechanism is used in a mean-field microkinetics model. The simulated curves of this mechanism reproduce the main experimental features.
86

Elaboration et caractérisation de matériaux d'anode à conduction mixte protonique / électronique pour l'électrolyse de la vapeur d'eau à haute température / Mixt conduction protonic/electronic ceramic for high temperature electrolysis anode

Goupil, Grégory 18 January 2011 (has links)
Cette thèse valide le concept de matériaux céramiques conducteurs mixtes protoniques/électroniques et leur utilisation en tant qu.anode pour électrolyseur de la vapeur d.eau à température intermédiaire. Les matériaux développés sont des cobaltites d.alcalino-terreux et de terre-rares couramment utilisés pour leur forte conductivité électronique dans la gamme de températures 300-600°C. La stabilité de chaque matériau a été vérifiée pendant 350h sous air et sous vapeur d.eau. Après analyse de la compatibilité chimique avec le matériau d.électrolyte BaZr0.9Y0.1O3, huit compositions ont été sélectionnées représentatives de deux structures pérovskites, classique et lacunaire : BaCoO3, LaCoO3, Sr0.5La0.5CoO3, Ba0.5La0.5CoO3, GdBaCo2O5, NdBaCo2O5, SmBaCo2O5 et PrBaCo2O5. L.évolution thermique de la st.chiométrie en oxygène de chaque matériau a été déterminée en couplant le titrage par iodométrie et ATG sous air sec. Une série d.ATG sous air humidifié a permis de sélectionner la gamme de températures optimale dans laquelle l.incorporation des protons est possible et maximale. Les profils d.incorporation des protons ont été réalisés par SIMS microanalyse nucléaire en géométrie ERDA sur deux échantillons. Les coefficients de diffusion du deutérium ont pu être déterminés confirmant la mobilité des protons dans les cobaltites. Sous air humide, le composé lacunaire NdBaCo2O5 incorpore rapidement, un nombre significatif de protons qui se distribuent de façon homogène au c.ur de l.échantillon. L.optimisation microstructurale des anodes a permis d.obtenir à 450°C et 600°C des résistances totales de cellule symétrique très prometteuses. / This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600°C. The stability of each material has been assessed during 350h in air and moist air. After checking the chemical compatibility with the BaZr0.9Y0.1O3 electrolyte material, eight compositions have been selected: BaCoO3, LaCoO3, Sr0.5La0.5CoO3, Ba0.5La0.5CoO3, GdBaCo2O5, NdBaCo2O5, SmBaCo2O5 and PrBaCo2O5. The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodometric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo2O5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450°C and 600°C total resistance values on symmetrical cell highly promising.
87

Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries / Fabrication d'électrodes nanostructurées hybrides hiérarchisées à base de nanotubes de carbone décorés par des nanoparticules pour les batteries Li-Ion

Ezzedine, Mariam 20 December 2017 (has links)
Cette thèse est consacrée à la fabrication ascendante (bottom-up) de matériaux nanostructurés hybrides hiérarchisés à base de nanotubes de carbone alignés verticalement (VACNTs) décorés par des nanoparticules (NPs). En fonction de leur utilisation comme cathode ou anode, des nanoparticules de soufre (S) ou silicium (Si) ont été déposées. En raison de leur structure unique et de leurs propriétés électroniques, les VACNTs agissent comme une matrice de support et un excellent collecteur de courant, améliorant ainsi les voies de transport électroniques et ioniques. La nanostructuration et le contact du S avec un matériau hôte conducteur améliore sa conductivité, tandis que la nanostructuration du Si permet d'accommoder plus facilement les variations de volume pendant les réactions électrochimiques. Dans la première partie de la thèse, nous avons synthétisé des VACNTs par une méthode de dépôt chimique en phase vapeur (HF-CVD) directement sur des fines feuilles commerciales d'aluminium et de cuivre sans aucun prétraitement des substrats. Dans la deuxième partie, nous avons décoré les parois latérales des VACNTs avec différents matériaux d'électrode, dont des nanoparticules de S et de Si. Nous avons également déposé et caractérisé des nanoparticules de nickel (Ni) sur les VACNTs en tant que matériaux alternatifs pour l'électrode positive. Aucun additif conducteur ou aucun liant polymère n'a été ajouté à la composition d'électrode. La décoration des nanotubes de carbone a été effectuée par deux méthodes différentes: méthode humide par électrodéposition et méthode sèche (par dépôt physique en phase vapeur (PVD) ou par CVD). Les structures hybrides obtenues ont été testées électrochimiquement séparément dans une pile bouton contre une contre-électrode de lithium. A notre connaissance, il s'agit de la première étude de l'évaporation du soufre sur les VACNTs et de la structure résultante (appelée ici S@VACNTs). Des essais préliminaires sur les cathodes nanostructurées obtenues (S@VACNTs revêtus d'alumine ou de polyaniline) ont montré qu'il est possible d'atteindre une capacité spécifique proche de la capacité théorique du soufre. La capacité surfacique de S@VACNTs, avec une masse de S de 0.76 mg cm-2, à un régime C/20 atteint une capacité de 1.15 mAh cm-2 au premier cycle. Pour les anodes nanostructurées au silicium (Si@VACNTs), avec une masse de Si de 4.11 mg cm-2, on montre une excellente capacité surfacique de 12.6 mAh cm-2, valeur la plus élevée pour les anodes à base de silicium nanostructurées obtenues jusqu'à présent. Dans la dernière partie de la thèse, les électrodes nanostructurées fabriquées ont été assemblées afin de réaliser la batterie complète (Li2S/Si) et sa performance électrochimique a été testée. Les capacités surfaciques obtenues pour les électrodes nanostructurées de S et de Si ouvrent la voie à la réalisation d'une LIB à haute densité d'énergie, entièrement nanostructurée, et démontrent le grand potentiel du concept proposé à base d'électrodes nanostructurées hybrides hiérarchisées. / This thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept.
88

Faradaic Reactions in Capacitive Deionization : A Comparison of Desalination Performance in Flow-through Cell Architectures

Bradley, John, Carlström, Miranda January 2023 (has links)
Capacitive Deionization (CDI) is an energy-efficient desalination technology that utilizes an electric field to extract ions from water. Flow-through CDI systems show potential for superior desalination performance compared to traditional flow-by CDI; however, they face the challenge of increased occurrence of Faradaic reactions, leading to undesired by-products and reduced energy efficiency. In this study, we constructed a flow-through CDI cell and investigated the desalination performance of the two possible cell configurations: upstream anode mode and downstream anode mode. A series of experiments were conducted, measuring conductivity and pH of the effluent solution during charging and discharging phases. The results were analyzed in terms of salt adsorption capacity and charge efficiency. We used pH fluctuations in the effluent solution as indicators of Faradaic reactions. It was found that upstream anode mode yielded superior desalination, with a salt adsorption capacity of 6.79 mg/g and charge efficiency of 64.3%, compared to downstream anode mode, which displayed a salt adsorption capacity of 5.19 mg/g and charge efficiency of 50.8%. However, upstream anode mode also produced more pronounced pH oscillations, suggesting a higher occurrence of Faradaic reactions. Reconciling these conflicting results and shedding light on the complex processes within the CDI cell calls for further investigation.
89

Simulations of Electrode Heterogeneity and Design for Lithium-Ion Batteries

Hamedi, Amir Sina 17 April 2023 (has links) (PDF)
This work develops three models for simulation of the high-current operation of Li-ion batteries. Simulation as a tool can provide understanding beyond what experiments can offer. Different types of electrodes such as graphite, silicon, and NMC are modeled to study cell performance and aging under aggressive operating conditions. The first part of this work focuses on the effect of electrode microscale lateral heterogeneity on the degradation of conventional Li-ion batteries, especially for fast-charge applications. The non-uniform pore distribution leads to the nonuniform current density and state of charge (SoC), which can finally result in non-uniform Li plating and aging. The interactions of electrode regions a few mm away from each other with different ionic conductivity are simulated by combining conventional models in parallel with submodels to treat additional physics. The onset and growth of lithium metal deposits on the anode are predicted. The next topic is to investigate the structure of multilayer anodes (MLA) consisting of two layers in the through-plane direction with different ionic resistances. The model is intended to simulate a commercially made cell. Simulation results demonstrate that coating a higher-density layer near the current collector and a lower-density layer near the separator provides improved accessibility to active material during cell fast charge through better ionic transport. In addition, the improved anode further augments the cathode performance in high-current discharges, leading to greater energy density and power density of the cell. The last topic is to develop a numerically efficient mechanical and electrochemical model for silicon anodes. Silicon has a much higher energy density than graphite as a material for the anode; however, it undergoes high volume expansion and contraction ($\sim$ 280\%) which affects cell thickness and electrode ionic transport. The mechanical model treats these volume-change phenomena in a continuum fashion and is integrated into a P2D model of a Si half cell. As shown by the model, the external casing material of such cells can improve or restrict electrode utilization. Different cell designs are simulated to predict the degree of lithiation.
90

Strain engineered nanomembranes as anodes for lithium ion batteries

Deng, Junwen 30 January 2015 (has links) (PDF)
Lithium ion batteries (LIBs) have attracted considerable interest due to their wide range of applications, such as portable electronics, electric vehicles (EVs) and aerospace applications. Particularly, the emergence of a variety of nanostructured materials has driven the development of LIBs towards the next generation, which is featured with high specific energy and large power density. Herein, rolled-up nanotechnology is introduced for the design of strain-released materials as anodes of LIBs. Upon this approach, self-rolled nanostructures can be elegantly combined with different functional materials and form a tubular shape by relaxing the intrinsic strain, thus allowing for enhanced tolerance towards stress cracking. In addition, the hollow tube center efficiently facilitates electrolyte mass flow and accommodates volume variation during cycling. In this context, such structures are promising candidates for electrode materials of LIBs to potentially address their intrinsic issues. This work focuses on the development of superior structures of Si and SnO2 for LIBs based on the rolled-up nanotech. Specifically, Si is the most promising substitute for graphite anodes due to its abundance and high theoretical gravimetric capacity. Combined with the C material, a Si/C self-wound nanomembrane structure is firstly realized. Benefiting from a strain-released tubular shape, the bilayer self-rolled structures exhibit an enhanced electrochemical behavior over commercial Si microparticles. Remarkably, this behavior is further improved by introducing a double-sided carbon coating to form a C/Si/C self-rolled structure. With SnO2 as active material, an intriguing sandwich-stacked structure is studied. Furthermore, this novel structure, with a minimized strain energy due to strain release, exposes more active sites for the electrochemical reactions, and also provides additional channels for fast ion diffusion and electron transport. The electrochemical characterization and morphology evolution reveal the excellent cycling performance and stability of such structures.

Page generated in 0.0605 seconds