• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 24
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 32
  • 28
  • 24
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Micro-Blast Waves

Obed Samuelraj, I 12 1900 (has links) (PDF)
The near field blast–wave propagation dynamics has been a subject of intense research in recent past. Since experiments on a large scale are difficult to carry out, focus has been directed towards recreating these blast waves inside the laboratory by expending minuscule amounts of energy(few joules),which have been termed here as micro–blast waves. In the present study, micro-blast waves are generated from the open end of a small diameter polymer tube (Inner Diameter of 1.3 mm)coated on its inner side with negligible amounts of HMX explosive (~18 mg/m), along with traces of aluminium powder. Experimental, numerical, and analytical approaches have been adopted in this investigation to understand the generation and subsequent propagation of these micro–blast waves in the open domain. Time–resolved schlieren flow visualization experiments, using a high speed digital camera, and dynamic pressure measurements (head–on and side–on pressures) have been carried out. Quasi one dimensional numerical modeling of the detonation process inside the tube, has been carried out by considering the reaction kinetics of a single(HMX) reaction to account for the reaction dynamics of HMX. The one dimensional numerical model is then coupled to a commercial Navier– Stokes equation solver to understand the propagation of the blast wave from the open end of the tube. A theory that is valid for large scale explosions of intermediate strength was then used for the first time to understand the propagation dynamics of these micro–blast waves. From the experiments, the trajectory of the blast wave was mapped, and its initial Mach number was found to be about 3.7. The side–on overpressure was found to be 5.5 psi at a distance of 20 mm from the tube, along an axis, offset by 30 mm from the tube axis. These values were found to compare quite well with the numerically obtained data in the open domain. From the numerical model of the tube, the energy in the blast wave was inferred to be 1.5 J. This value was then used in the analytical theory and excellent correlation was obtained, suggesting the exciting possibility of using such theories, validated for large-scale explosions, to describe these micro–blasts. Considering the uncertainties in the approximate model, a better estimate of energy was obtained by working back the energy(using the analytical model) from the trajectory data as 1.25 J. The average TNT equivalent, a measure of its strength relative to a TNT explosion, was found to be 0.3. A few benchmark experiments, demonstrating the capability of this novel blast device have also been done by comparing them against the extant large–scale explosion database, suggesting the possibility of using these micro–blast waves to study certain aspects of large–scale explosions.
52

Simulations des écoulements en milieu urbain lors d'un évènement pluvieux extrême

Araud, Quentin 30 November 2012 (has links) (PDF)
Les écoulements en milieu urbain sont complexes et à l'heure actuelle estimés à l'aide d'outils informatiques. Pourtant, le manque de données expérimentales sur des géométries urbaines rend la validation et l'encadrement de l'utilisation de ces derniers difficile. Cette thèse présente les résultats obtenus sur un modèle physique d'un quartier urbain. La distribution des hauteurs d'eau ainsi que la répartition des débits en sortie du quartier expérimental sont mesurées. Leur étude a mis en évidence certains comportements caractéristiques des écoulements. Les données expérimentales ont été comparées aux simulations numériques générées avec un code 3D (Ansys-Fluent®) et un outil de recherche (Neptune 2D) mis au point durant cette thèse. Ce dernier résout les équations de Barré de Saint Venant 2D à l'aide d'un schéma EVR-DG, associé à une modification des solveurs de Riemann qui rend le code de calcul well-balanced.Les écarts observés entre Ansys-Fluent® et l'expérimental sont majoritairement en-dessous de 10%. Le code Neptune 2D apparait quant à lui légèrement moins précis : les écarts peuvent atteindre 20 à 30%. Diverses hypothèses sont avancées pour expliquer ces écarts.
53

Microgravity Flow Transients in the Context of On-Board Propellant Gauging

Aatresh, K January 2014 (has links) (PDF)
It is well known that surface tension of a liquid has a decisive role in flow dynamics and the eventual equilibrium state, especially in confined flows under low gravity conditions and also in free surface flows. One such instance of a combination of these two cases where surface tension plays an important role is in the microgravity environment of a spacecraft propellant tank. In this specific case both propellant acquisition and residual propellant estimation are critical to the mission objectives particularly in the end-of-life phase. While there have been a few studies pertaining to the equilibrium state in given geometric configurations, the transient flow leading to final state from an initial arbitrary distribution of propellant is rarely described. The present study is aimed at analysing the dynamic behaviour of the liquids under reduced gravity through numerical simulation and also addresses the specific case of propellant flow transient in a cone-in-a-sphere type of tank configuration proposed by Lal and Raghunandan which is likely to result in both improved acquisition and life time estimation of spacecraft. While addressing this specific problem, the present work aims to study the transient nature of such surface tension driven flows in a general form as applicable to other similar problems also. Volume of Fluid (VOF) method for multiphase model in ANSYS FLUENT was adapted with suitable changes for generating numerical solutions to this problem. Simulations were run for three different cone angles of 17o, 21o & 28o with a flat liquid surface for full scale models to measure the rise height and time of rise. Two scaled models of ½ and 1/10th of the original dimensions with the same liquid configuration of the 28o cone angle case were simulated to see if the time scales involved would come down for experimental feasibility. A third simulation of the 1/10th scale model was run with the liquid spread in the tank to imitate the general conditions found in the propellant tank in microgravity. To understand the behaviour of liquids in the microgravity state to changing physical parameters, a set of simulations was run using liquid phases as water and hydrazine with different physical parameters of temperature and surface tension. The theory put forward by Lal and Raghunandan was found to stand firm. In the case of the cone angle of 28o it was observed that in the final equilibrium state the liquid collected towards the apex of the cone with the larger volume fraction of liquid accumulating inside the cone. An addition of a cylindrical section at the bottom of the cone seems to help although not uniformly for all case. The equilibrium settling times for all the three cone angle cases were in the order of 300 to 600 seconds for simulations on a spherical tank of diameter two metres which was close to the actual tank dimension used on spacecraft. Scaled down simulations of 1/10th and ½ the tank geometry with both flat liquid surfaces and spread out liquid volumes showed that the smaller models had equilibrium settling times which were considerably lower (in the order of tens of seconds) than the full scale models. Although smaller, these time scales are larger than the maximum time scales available in drop tower tests which provide a maximum free fall time of around 9 to 10 seconds. Validation of the proposed configuration by flying an aircraft in a parabolic flight path is a possibility that could be explored for the scaled down models since the zero-g duration for these flights is on an average between 15-20 seconds.
54

Modelling of flow and pressure characteristics in the model of the human upper respiratory tract under varying conditions / Modelling of flow and pressure characteristics in the model of the human upper respiratory tract under varying conditions

Karlíková, Adéla January 2020 (has links)
Cílem této diplomové práce je vytvořit 3D model horních dýchacích cest podle originálního modelu segmentovaného z CT dat, aplikovat různé podmínky na průtok vzduchu v modelu, a poté hodnotit změnu charakteristik rychlosti a tlaku. Model horních dýchacích cest byl vytvořen v prostředí softwaru ANSYS, který využívá výpočetní dynamiku tekutin, a byly použity Navier-Stokesovy rovnice pro modelování průtoku vzduchu v modelu. Nejprve byl vytvořen jednoduchý 2D model za účelem seznámení se s prostředím ANSYS. Dále byl zkonstruován 3D model horních dýchacích cest a byly modelovány charakteristiky rychlosti a tlaku za různých podmínek. Tyto podmínky zahrnují různé umístění a množství míst pro odběr vzorků v modelu a výběr různých kombinací vstupů. Nakonec byly prezentovány a hodnoceny výsledky spolu s ilustracemi modelů modelovaných za různých podmínek. 3D model lze považovat ze kompromis mezi výpočetní náročností a složitostí modelu a lze jej použít jako základ pro další výzkum.
55

Optimalizace tvaru čerpání diferenciálně čerpané komory pro novou koncepci elektronového mikroskopu / Optimizing the shape of the pumping chambers differentially pumped chamber for a new concept of the electron microscope.

Polách, Ondřej January 2015 (has links)
The present work deals with electron microscopy, electron microscopy primarily environmental. The main task of the work will draft the optimal shape of the differentially pumped chamber, dividing the pressure difference between tube and chamber with sample for a new concept of an electron microscope. By ANSYS Fluent will be analyzed pumping gas. Subsequently, according to the results obtained will be a modified form of the differential Chamber and to achieve the lowest gas pressure on the track of the electron beam.
56

Analýza tvaru sacích kanálů současné koncepce diferenciálně čerpané komory / Analysis of the shape of the intake ports of the current concept differentially pumped chamber

Bílek, Michal January 2015 (has links)
This master´s thesis discusses the analysis of the shape of the intake ports of differentially pumped chamber for the current concept. The first part is an introduction to the microscopy issue, then it is focused on ESEM microscopes and it also includes a describtion of the Flow dynamics and a mathematical describtion. In the following chapters the software Solid Works, where the model of differentially pumped chamber is created, and the software Ansys Fluent, which is used for analysis, are described. The second part concerns the proposed concepts and the results of their simulations. At the end of the work the results are analyzed and evaluated.
57

Analýza vlivu proudění plynu v oblasti umístění vzorku v komoře enviromentálního rastrovacího elektronového mikroskopu / Analysis of the influence of the gas flow in the placement of the sample in the chamber of the environmental scanning electron microscope

Bednář, Eduard January 2016 (has links)
This thesis deals with the simulation of fluid dynamics in environmental scanning electron microscope and evaluate solvers setup, the degree of discretization, choice of turbulent model and proposal optimal design of environmental scanning electron microscope. The theoretical part describes the issue of environmental scanning electron microscopy, software SolidWorks and ANSYS Fluent, basic equations describing fluid status, fluid turbulence, the mean free path of molecules and electron scattering. The practical part of the thesis is to create the model of environmental scanning electron microscope AQUASEM II in CAD system SolidWorks and simulation of fluid flow in the sample chamber before aperture PLA1 by ANSYS Fluent. A series of simulations provided the perfect setting solver. These knowledge are used in the second stage of the practical part, where is proposed optimal shape of the table sample and the input aperture PLA1.
58

CFD Simulations of Flow Characteristics of a Piano Key Weir Spillway

Sjösten, William, Vadling, Victor January 2020 (has links)
Comprehensive rehabilitation projects of dam spillways are made in Sweden, due to stricter dam safety guidelines for their discharge capacity. The Piano Key Weir (PKW) is an innovative design which has proven effective through several renovation projects made in many countries including France. In this study we investigate the flow patterns around a prototype PKW, located in Escouloubre dam in southern France, with numerical simulations through three different flow cases in Ansys Fluent. A computational domain containing the PKW is created in the CAD software Ansys SpaceClaim for the simulations. Three polyhexcore meshes are further generated using Ansys Fluent Meshing. The three flow cases are then simulated with a Reynolds-averaged Navier-Stokes (RANS) model, coupled with realizable k-epsilon and volume of fluid models. Through an assessment of the discretization error between three meshes, a relative error of one percent is obtained for the discharge rate. The numerical results are qualitatively compared with results from previously conducted physical experiments on this PKW. The RANS model does not capture the water surface undulations (due to turbulence) around the PKW. The effects from under modelled surface undulations are alleviated by inserting an air vent to the PKW, which results in a flow behaviour in good agreement with the physical experiments. Through this alteration, water discharge rates are computed with a maximum discrepancy of five percent compared with the corresponding experimental values. A large eddy simulation should be conducted in the future, to bring further light on air exchange and water interaction phenomena present in the PKW flow pattern.
59

Computational Analysis of Mixing in Microchannels

Adhikari, Param C. 10 June 2013 (has links)
No description available.
60

Effects of Coriolis Force on Liquid Fuel Wick Flames in Artificial Partial Gravity in a Centrifuge

Zatania Lojo, Arland January 2022 (has links)
No description available.

Page generated in 0.0599 seconds