• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Study on Hydrodynamic Characteristics of Flood Discharge Tunnel in Zipingpu Water Conservancy Project : Using RANS equations and the VOF model

Hamberg, Micaela, Dahlin, Signe January 2019 (has links)
To avoid the large amount of damage that floods can cause, spillway tunnels are used to control water levels. To ensure the safety of water transportation through spillway tunnels, the behaviour of the water throughout the tunnel is important to know. Physical experiments are time consuming and expensive, hence CFD simulations are a profitable option for investigating the performance of the spillway tunnel. In this project, simulations of water flow in a spillway tunnel were executed. A three dimensional model of the spillway tunnel in Zipingpu Water Conservancy Project was created in the software ANSYS Gambit. A coarse, middle and fine mesh with both hexahedral- and tetrahedral elements were also created for the model in ANSYS Gambit. The meshes were imported to ANSYS Fluent where the simulations, and a convergence analysis were made. The water flow was set to be described by the Reynolds-Averaged Navier-Stokes model, using the pressure solver, k-epsilon model and the VOF model. Physical experiments had previously been performed, and the simulated results were compared to these, in an attempt to find the parameters to replicate the experimental results to the greatest extent possible. The inlet velocity of the tunnel was known and the inlet boundary was set as a velocity inlet. The ceiling of the tunnel was set as a pressure inlet, the floor and walls were set as wall, and the outlet was set as pressure outlet. The simulated results showed similar behavior as the experimental results, but all differed from the experimental results. The grid convergence index, estimating the results' dependency on the mesh was 6.044 %. The flow was analyzed, and where the flow had unfavorable characteristics, such as a high cavitation number, the geometry of the spillway was altered in ANSYS Gambit to investigate if an improved geometry for the spillway tunnel could be found. The water flow in the revised geometry was simulated in ANSYS Fluent, and results showing flow with lower cavitation numbers was found.

Page generated in 0.0415 seconds