• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aeration and risk mitigation for flood discharge tunnel in Zipingpu water conservancy project

CONTRERAS MORENO, Jorge, GHEBREIGZIABHER, KIBRET DAWIT January 2020 (has links)
The importance of hydraulic structures has become an essential mitigating mean for floodsthat occur more often due to climate change. Thus, the importance and safety of flooddischarge tunnels has promoted further studies and experiments on the topic to mitigatedamages, such as cavitation that arise because of high speed flows.After an experimental study on a physical model was carried out on the flood discharge tunnelin Zipingpu Water Conservancy project, a CFD model was designed and simulated in thecommercial software ANSYS Fluent. The simulations aimed to evaluate and examine the riskfor cavitation in the tunnel, examine the design problems of the structure and analyse theinstalled aerators for the mitigation of cavitation. Moreover, using CFD models as acomplementary form to physical models was analyzed.A three dimensional geometry of the discharge tunnel was built in ANSYS Spaceclaim and themesh conducted with ANSYS mesh generator. The known boundary condition such as thedesign flow conditions, velocity inlet, pressure inlets and pressure outlet were set. For themodel a multiphase VOF scheme with RANS approach, k-ϵ turbulence model and a standardwall function was set.The results from the initial simulations showed that the discharge tunnel was under cavitationrisk, since the recorded cavitation index in the tunnel was below 1.8. After having revised thelayout of the aerators in order to mitigate cavitation risk, the results from the simulations withadded aerators were sufficient to mitigate the risk as the cavitation index was still below 1.8.The results for the cavitation index remained unchanged even in the simulated models with adifferent solver setup that were used in the comparison with the experimental data in order tovalidate them.As a conclusion, it was recommended that the tunnel design has to be revised and improvedby adding more aerators and air vents to mitigate the cavitation risk. Furthermore, more studieson the discharge tunnel or similar tunnels with similar conditions should be carried out in orderto validate the results of this study and determine if numerical models are preferable to physicalmodels
2

Cavitation assessment of the Baihetan discharge tunnel – Using Computational Fluid Dynamics / Bedömning av risken för kavitation i utskovstunneln för Baihetankraftverket med CFD-beräkningar.

Alderman, Carin, Andersson, Sophia January 2012 (has links)
Recently it has become more common in the construction of large dams to reuse diversion tunnels as flood discharge tunnels in the final structure. These tunnels handle large flows with the characteristics of open channel flow. When such large hydrological forces act upon a structure there are several problems to be expected. One of these is the occurrence of cavitation, which could have potential hazardous erosion as a consequence. Cavitation is the formation and collapse of bubbles that create a shockwave strong enough to erode the underlying material. The Baihetan dam is one of the largest hydro power projects in China at present. It has three discharge tunnels that all run the risk of developing cavitation damages. By modelling one of the tunnels using Computational Fluid Dynamics (CFD) it is possible to investigate where in the tunnel structure cavitation is likely to occur. This degree project assesses the risk of cavitation erosion in the Baihetan tunnel using the static pressure distribution, the velocity distribution and modern cavitation theory. Several modifications of the tunnel – including alterations in the gradient and construction parameters – are simulated in order to investigate if changes in the design can mitigate the cavitation problem. None of the analysed modifications completely eliminate the problem and aeration is recommended to counteract the problem. This study indicates where cavitation might be a problem in the Baihetan tunnel and can be used as a basis for further research.
3

Numerical Study on Hydrodynamic Characteristics of Flood Discharge Tunnel in Zipingpu Water Conservancy Project : Using RANS equations and the VOF model

Hamberg, Micaela, Dahlin, Signe January 2019 (has links)
To avoid the large amount of damage that floods can cause, spillway tunnels are used to control water levels. To ensure the safety of water transportation through spillway tunnels, the behaviour of the water throughout the tunnel is important to know. Physical experiments are time consuming and expensive, hence CFD simulations are a profitable option for investigating the performance of the spillway tunnel. In this project, simulations of water flow in a spillway tunnel were executed. A three dimensional model of the spillway tunnel in Zipingpu Water Conservancy Project was created in the software ANSYS Gambit. A coarse, middle and fine mesh with both hexahedral- and tetrahedral elements were also created for the model in ANSYS Gambit. The meshes were imported to ANSYS Fluent where the simulations, and a convergence analysis were made. The water flow was set to be described by the Reynolds-Averaged Navier-Stokes model, using the pressure solver, k-epsilon model and the VOF model. Physical experiments had previously been performed, and the simulated results were compared to these, in an attempt to find the parameters to replicate the experimental results to the greatest extent possible. The inlet velocity of the tunnel was known and the inlet boundary was set as a velocity inlet. The ceiling of the tunnel was set as a pressure inlet, the floor and walls were set as wall, and the outlet was set as pressure outlet. The simulated results showed similar behavior as the experimental results, but all differed from the experimental results. The grid convergence index, estimating the results' dependency on the mesh was 6.044 %. The flow was analyzed, and where the flow had unfavorable characteristics, such as a high cavitation number, the geometry of the spillway was altered in ANSYS Gambit to investigate if an improved geometry for the spillway tunnel could be found. The water flow in the revised geometry was simulated in ANSYS Fluent, and results showing flow with lower cavitation numbers was found.

Page generated in 0.0477 seconds