• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solving the Traveling Salesman Problem by Ant Colony Optimization Algorithms with DNA Computing

Huang, Hung-Wei 29 July 2004 (has links)
Previous research on DNA computing has shown that DNA algorithms are useful to solve some combinatorial problems, such as the Hamiltonian path problem and the traveling salesman problem. The basic concept implicit in previous DNA algorithms is the brute force method. That is, all possible solutions are created initially, then inappropriate solutions are eliminated, and finally the remaining solutions are correct or the best ones. However, correct solutions may be destroyed while the procedure is executed. In order to avoid such an error, we recommend combining the conventional concepts of DNA computing with a heuristic optimization method and apply the new approach to design strategies. In this thesis, we present a DNA algorithm based on ant colony optimization (ACO) for solving the traveling salesman problem (TSP). Our method manipulates DNA strands of candidate solutions initially. Even if the correct solutions are destroyed during the process of filtering out, the remaining solutions can be reconstructed and correct solutions can be reformed. After filtering out inappropriate solutions, we employ control of melting temperature to amplify the surviving DNA strings proportionally. The product is used as the input and the iteration is performed repeatedly. Accordingly, the concentration of correct solutions will be increased. Our results agree with that obtained by conventional ant colony optimization algorithms and are better than that obtained by genetic algorithms. The same idea can be applied to design methods for solving other combinatorial problems with DNA computing.
2

Ant Colony Optimization Algorithms for Sequence Assembly with Haplotyping

Wei, Liang-Tai 24 August 2005 (has links)
The Human Genome Project completed in 2003 and the draft of human genome sequences were also yielded. It has been known that any two human gnomes are almost identical, and only very little difference makes human diversities. Single nucleotide polymorphism (SNP) means that a single-base nucleotide changes in DNA. A SNP sequence from one of a pair of chromosomes is called a haplotype. In this thesis, we study how to reconstruct a pair of chromosomes from a given set of fragments obtained by DNA sequencing in an individual. We define a new problem, the chromosome pair assembly problem, for the chromosome reconstruction. The goal of the problem is to find a pair of sequences such that the pair of output sequences have the minimum mismatch with the input fragments and their lengths are minimum. We first transform the problem instance into a directed multigraph. And then we propose an efficient algorithm to solve the problem. We apply the ACO algorithm to optimize the ordering of input fragments and use dynamic programming to determine SNP sites. After the chromosome pair is reconstructed, the two haplotypes can also be determined. We perform our algorithm on some artificial test data. The experiments show that our results are near the optimal solutions of the test data.
3

Uma abordagem híbrida para planejamento exploratório de trajetórias e controle de navegação de robôs móveis autônomos / A hybrid approach for exploratory path planning and navigation control for autonomous mobile robots

Santos, Valéria de Carvalho 17 October 2017 (has links)
A tarefa de planejamento de trajetórias de robôs móveis autônomos consiste em determinar objetivos intermediários para que um robô seja capaz de partir de sua localização inicial e alcançar seu objetivo final. Além do planejamento, é importante definir um método de controle da navegação (seguimento da trajetória) do robô para que ele seja capaz de realizar seu trajeto de forma segura. Este projeto propõe uma abordagem híbrida para planejamento exploratório e execução de trajetórias de robôs móveis autônomos em ambientes indoor. Para o planejamento de trajetória, foram investigados algoritmos de busca em espaço de estados, dando ênfase ao uso de algoritmos evolutivos e algoritmos de otimização por colônia de formigas para a descoberta e otimização da trajetória. O controle da navegação é realizado por meio de comportamentos locais reativos, baseado na exploração e uso de mapas topológicos, os quais permitem uma maior flexibilidade em termos de definição da localização da posição do robô móvel e sobre os detalhes do mapa do ambiente (mapas com informações aproximadas e não métricos). Assim, foi proposto e desenvolvido um método robusto capaz de planejar, mapear e explorar um caminho ótimo ou quase ótimo para que o robô possa navegar e alcançar seu objetivo de forma segura, com pouca informação prévia do ambiente ou mesmo sobre sua localização. Além disso, o robô pode reagir a ambientes com alterações dinâmicas em sua estrutura, considerando por exemplo, elementos dinâmicos como portas que possam ser abertas ou fechadas e passagens que são obstruídas. Por fim, foram realizados diversos testes e simulações a fim de validar o método proposto, com a avaliação da qualidade das soluções encontradas e comparação com outras abordagens tradicionais de planejamento de trajetórias (algoritmos A* e D*). / The task of planning path for autonomous mobile robots consists in determine intermediary goals in order to allow a robot be able to leave its initial location and reach its final goal. Besides the planning, it is important to define a method of navigation control (the trajectory following) of the robot for it be able to do its path safely. This project proposes a hybrid approach to path planning and execution of an autonomous mobile robot in indoor environments. For the path planning, search algorithms in state space have been investigated, with emphasis in evolutionary algorithms and ant colony optimization algorithms for the trajectory search and optimization. The navigation control is done by local reactive behaviors, based on topological maps, which allow more flexibility concerning localization definition of position of the mobile robot and about the details of the environment map (maps with approximate information and not metric). Thus, a robust method able to plan an optimum or almost optimum path for the robot to reach its goal safely has been proposed, with little previous information of the environment. Furthermore, the robot can react to dynamic elements in the environment structure, concerning, for example, dynamic elements such as doors that can be opened or closed and ways that are blocked. Finally, several tests and simulations has been carried out to validate the proposed method, with evaluation of the solutions quality and comparison with others traditional approaches for the path planning task (A* and D* algorithms).
4

Uma abordagem híbrida para planejamento exploratório de trajetórias e controle de navegação de robôs móveis autônomos / A hybrid approach for exploratory path planning and navigation control for autonomous mobile robots

Valéria de Carvalho Santos 17 October 2017 (has links)
A tarefa de planejamento de trajetórias de robôs móveis autônomos consiste em determinar objetivos intermediários para que um robô seja capaz de partir de sua localização inicial e alcançar seu objetivo final. Além do planejamento, é importante definir um método de controle da navegação (seguimento da trajetória) do robô para que ele seja capaz de realizar seu trajeto de forma segura. Este projeto propõe uma abordagem híbrida para planejamento exploratório e execução de trajetórias de robôs móveis autônomos em ambientes indoor. Para o planejamento de trajetória, foram investigados algoritmos de busca em espaço de estados, dando ênfase ao uso de algoritmos evolutivos e algoritmos de otimização por colônia de formigas para a descoberta e otimização da trajetória. O controle da navegação é realizado por meio de comportamentos locais reativos, baseado na exploração e uso de mapas topológicos, os quais permitem uma maior flexibilidade em termos de definição da localização da posição do robô móvel e sobre os detalhes do mapa do ambiente (mapas com informações aproximadas e não métricos). Assim, foi proposto e desenvolvido um método robusto capaz de planejar, mapear e explorar um caminho ótimo ou quase ótimo para que o robô possa navegar e alcançar seu objetivo de forma segura, com pouca informação prévia do ambiente ou mesmo sobre sua localização. Além disso, o robô pode reagir a ambientes com alterações dinâmicas em sua estrutura, considerando por exemplo, elementos dinâmicos como portas que possam ser abertas ou fechadas e passagens que são obstruídas. Por fim, foram realizados diversos testes e simulações a fim de validar o método proposto, com a avaliação da qualidade das soluções encontradas e comparação com outras abordagens tradicionais de planejamento de trajetórias (algoritmos A* e D*). / The task of planning path for autonomous mobile robots consists in determine intermediary goals in order to allow a robot be able to leave its initial location and reach its final goal. Besides the planning, it is important to define a method of navigation control (the trajectory following) of the robot for it be able to do its path safely. This project proposes a hybrid approach to path planning and execution of an autonomous mobile robot in indoor environments. For the path planning, search algorithms in state space have been investigated, with emphasis in evolutionary algorithms and ant colony optimization algorithms for the trajectory search and optimization. The navigation control is done by local reactive behaviors, based on topological maps, which allow more flexibility concerning localization definition of position of the mobile robot and about the details of the environment map (maps with approximate information and not metric). Thus, a robust method able to plan an optimum or almost optimum path for the robot to reach its goal safely has been proposed, with little previous information of the environment. Furthermore, the robot can react to dynamic elements in the environment structure, concerning, for example, dynamic elements such as doors that can be opened or closed and ways that are blocked. Finally, several tests and simulations has been carried out to validate the proposed method, with evaluation of the solutions quality and comparison with others traditional approaches for the path planning task (A* and D* algorithms).

Page generated in 0.092 seconds