• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 11
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 37
  • 32
  • 20
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluation of Joint AOA and DOA Estimation Algorithms Using the Antenna Array Systems

Hu, Zhong 30 April 1999 (has links)
We have created an eight-element antenna array system for evaluating various Angle of Arrival (AOA) Position Location (PL) algorithms, such as MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques ESPRIT algorithms. Since using delay of arrival information can improve AOA estimates and classical PL algorithms do not incorporate Delay of Arrival (DOA) information, the performance of these algorithms is not optimal. Recently proposed Joint AOA and DOA Estimation (JADE) algorithms, though more complicated, potentially have higher resolutions in both space and time domains. Our investigation shows that by using bandlimited known signals it is possible to resolve the DOA within a fraction of the sample period using JADE algorithms. Joint AOA and DOA algorithms can provide high resolution DSP-based channel measurement using low bandwidth hardware. / Master of Science
32

Overloaded Array Processing: System Analysis, Signal Extraction Techniques, and Time-delay Estimation

Bayram, Saffet 11 December 2000 (has links)
In airborne communication systems such as airborne cell-extender repeaters the receiver faces the challenge of demodulating the signal of interest (SOI) in the presence of excessive amounts of Co-Channel Interference (CCI) from a large number of sources. This results in the overloaded environment where the number of near-equal power co-channel interferers exceeds the number of antenna array elements. This thesis first analyzes the interference environment experienced by an airborne cellular repeater flying at high altitudes. Link budget analysis using a two-ray propagation model shows that the antenna array mounted on an airborne receiver has to recover the SOI out of hundreds of co-channel interfering signals. This necessitates use of complex overloaded array signal processing techniques. An extensive literature survey on narrowband signal extraction algorithms shows that joint detection schemes, coupled with antenna arrays, provide a solution for narrowband overloaded array problem where as traditional beamforming techniques fail. Simulation results in this thesis investigates three "promising" overloaded array processing algorithms, Multi-User Decision Feedback Equalizer (MU-DFE), Iterative Least Squares with Projection (ILSP), and Iterative Least Squares with Enumeration (ILSE). ILSE is a non-linear joint maximum-likelihood detector, is shown to demodulate many more signals than elements even when the users are closely spaced and the channel is blindly estimated. Multi-user time delay estimation is one of the most important aspects of channel estimation for overloaded array processing. The final chapter of the thesis proposes a low-complexity data-aided time-delay estimation structure for embedding in a Per Survivor Processing (PSP) trellis for overloaded array processing. An extensive analysis proves that the multi-user delay estimation is separable, which leads to the proposed multi-user algorithm that estimates the user delays with a bank of simple data-aided synchronization loops to reduce the complexity. This thesis shows simulation results for the single-user case where the low-complexity Delay Locked Loop (DLL) structure, working at a low oversampling rate of 2 samples per symbol, estimates and compensates for any integer or non-integer sample delay within ±Tsym(symbol period). Two extensions to this technique are proposed to provide efficient multi-user delay estimation. The first multi-user structure employs a bank of DLLs, which compensate for the timing offset of each user simultaneously. This multi-user algorithm is suitable for CDMA-type applications, where each user has a distinct PN-code with good auto- and cross-correlation properties. We show that for spreading gain of 31, the presence of an interpolator enables us to reduce the oversampling factor from 4 to 2 samples per chip. Thus, the requirements of the A/D converter are relaxed without sacrificing system performance. Furthermore, we show that the proposed scheme meets the requirements of multi-user interference cancellation techniques for residual worst-case timing errors, i.e., residual timing error < 0.2 Tc, as reported in [200]. Finally, the thesis recommends a similar multi-user structure for narrowband TDMA-type system, which is based on bank of DLLs with whitening pre-filters at the front end of each branch. / Master of Science
33

Overloaded Array Processing with Spatially Reduced Search Joint Detection

Hicks, James E. Jr. 22 August 2000 (has links)
An antenna array is overloaded when the number of cochannel signals in its operating environment exceeds the number of elements. Conventional space-time array processing for narrow-band signals fails in overloaded environments. Overloaded array processing (OAP) is most difficult when signals impinging on the array are near equal power, have tight excess bandwidth, and are of identical signal type. In this thesis, we first demonstrate how OAP is theoretically possible with the joint maximum likelihood (JML) receiver. However, for even a modest number of interfering signals, the JML receiverà ­s computational complexity quickly exceeds the real-time ability of any computer. This thesis proposes an iterative joint detection technique, Spatially Reduced Search Joint Detection, (SRSJD), which approximates the JML receiver while reducing its computational complexity by several orders of magnitude. This complexity reduction is achieved by first exploiting spatial separation between interfering signals with a linear pre-processing stage, and second, performing iterative joint detection with a (possibly) tail-biting and time"-varying trellis. The algorithm is sub-optimal but is demonstrated to well approximate the optimum receiver in modest signal to interference ratios. SRSJD is shown to demodulate over 2M zero excess bandwidth synchronous QPSK signals with an M element array. Also, this thesis investigates a temporal processing technique similar to SRSJD, Temporally Reduced Search Joint Detection (TRSJD), that separates co-channel, asynchronous, partial response signals. The technique is demonstrated to separate two near equal power QPSK signals with r= .35 root raised-cosine pulse shapes." / Master of Science
34

Synthesis of Optimal Arrays For MIMO and Diversity Systems

Quist, Britton T. 28 November 2007 (has links) (PDF)
This thesis proposes a method for determining the optimal antenna element radiation characteristics which maximize diversity gain given a specific power angular spectrum of the propagation environment. The method numerically constructs the eigenfunctions of the covariance operator for the scenario subject to constraints on the power radiated by each antenna as well as the level of supergain allowed in the solution. The optimal antenna characteristics are produced in terms of radiating current distributions along with their resulting radiation patterns. The results reveal that the optimal antennas can provide significantly more diversity gain than that provided by a simple practical design. Computational examples illustrate the effectiveness of adding additional elements to the optimal array and the relationship between aperture size or the description of the impinging field and the array performance. A synthesis procedure is proposed which uses genetic algorithm optimization to optimally place a reduced number of dipoles. The results from this procedure demonstrate that using the framework in conjunction with optimization strategies can lead to practical designs which perform well relative to the upper performance bound. Finally a novel array architecture is proposed where subsets of antennas are combined together into super-elements which are then combined in the same manner as the optimal array. The simplifications that result from the genetically optimized small array or the super-element array provide a design options which are feasible in many communication applications.
35

Analysis and Implementation of a Novel Single Channel Direction Finding Algorithm on a Software Radio Platform

Keaveny, John Joseph 07 March 2005 (has links)
A radio direction finding (DF) system is an antenna array and a receiver arranged in a combination to determine the azimuth angle of a distant emitter. Basically, all DF systems derive the emitter location from an initial determination of the angle-of-arrival (AOA). Radio direction finding techniques have classically been based on multiple-antenna systems employing multiple receivers. Classic techniques such as MUSIC [1][2] and ESPRIT use simultaneous phase information from each antenna to estimate the angle-of-arrival of the signal of interest. In many scenarios (e.g., hand-held systems), however, multiple receivers are impractical. Thus, single channel techniques are of interest, particularly in mobile scenarios. Although the amount of existing research for single channel DF is considerably less than for multi-channel direction finding, single channel direction finding techniques have been previously investigated. Since many of the single channel direction finding techniques are older analog techniques and have been analyzed in previous work, we will investigate a new single channel direction finding technique that takes specific advantage of digital capabilities. Specifically, we propose a phase-based method that uses a bank of Phase-Locked Loops (PLLs) in combination with an eight-element circular array. Our method is similar to the Pseudo-Doppler method in that it samples antennas in a circular array using a commutative switch. In the proposed approach the sampled data is fed to a bank of PLLs which track the phase on each element. The parallel PLLs are implemented in software and their outputs are fed to a signal processing block that estimates the AOA. This thesis presents the details of the new Phase-Locked Loop (PLL) algorithm and compares its performance to existing single channel DF techniques such as the Watson-Watt and the Pseudo-Doppler techniques. We also describe the implementation of the PLL algorithm on a DRS Signal Solutions, Incorporated (DRS-SS) WJ-8629A Software Definable Receiver with Sunrise™ Technology and present measured performance results. / Master of Science
36

Anténní řady se syntetizovanou kmitočtovou závislostí zisku / Antenna Arrays with Synthesized Frequency Response of Gain

Všetula, Petr January 2014 (has links)
V disertační práci popisuji metodu syntézy dipólové anténní řady s definovanou schopností prostorové a spektrální filtrace. Díky prostorové filtraci se směr hlavního laloku a hodnota zisku mění v celém pracovním pásmu jen zanedbatelně. Díky spektrální filtraci je hodnota zisku v pracovním pásmu nejvyšší a mimo toto pásmo nejnižší. Abychom syntetizovali anténní řadu s předepsanými filtračními vlastnostmi, optimalizujeme amplitudy, fáze a rozměry prvků dipólové anténní řady. Abychom počáteční optimalizaci co nejvíce urychlili, předpokládáme při výpočtu hodnot kriteriálních funkcí idealizovanou anténní řadu. Jelikož optimalizace zahrnuje požadavky na směr hlavního laloku, zisk i impedanční přizpůsobení, využíváme k syntéze multi-kriteriální optimalizaci. Optimalizovaná anténní řada byla následně analyzována ve vlnovém simulátoru, aby byl ověřen výsledek syntézy. Syntetizovaná anténní řada byla vyrobena a experimentálně byly ověřeny její vlastnosti.
37

Návrh anténní řady pro MSPS radar pracující v pásmu L / Design of antenna array for MSPS radar operating in L-band

Gaja, Tomáš January 2017 (has links)
This thesis deals with the design of an antenna array for the MSPS Radar L band application. The introduction covers a research for a suitable antenna element which can be used as an element of steerable antenna array. The control of the main beam is enabled in the vertical plane. Based on a presented theory, a slotted waveguide antenna array with an omnidirectional radiation in the vertical plane is designed. The operating frequency is set to 1 367.5 MHz. Slotted array achieves 20° width of the main beam in elevation plane. The achieved gain of the array is 9.15 dBi. Further attention of this work is focused on the beam steering that is allowed by diode switching. The last part of the thesis presents manufacturing process of the designed model. The CST Microwave Studio software was used for the antenna array designing process.
38

Modeling of Multiple-Input Multiple-Output Radio Propagation Channels

Yu, Kai January 2002 (has links)
<p>In recent years, multiple-input multiple-output (MIMO)systems appear to be very promising since they can provide highdata rates in environments with sucient scattering byexploiting the spatial domain. To design a real MIMO wirelesssystem and predict its performance under certain circumstances,it is necessary to have accurate MIMO wireless channel modelsfor dierent scenarios. This thesis presents dierent models forindoor MIMO radio propagation channels based on 5.2 GHz indoorMIMO channel measurements.The recent research on MIMO radio channel modeling isbriey reviewed in this thesis. The models are categorized intonon-physical and physical models. The non-physical modelsprimarily rely on the statistical characteristics of MIMOchannels obtained from the measured data while the physicalmodels describe the MIMO channel (or its distribution) via somephysical parameters. The relationships between dierent modelsare also discussed.For the narrowband case, a non line-of-sight (NLOS)indoor MIMO channel model is presented. The model is based on aKronecker structure of the channel covariance matrix and thefact that the channel is complex Gaussian. It is extended tothe line-of-sight (LOS) scenario by estimating and modeling thedominant component separately.As for the wideband case, two NLOS MIMO channel modelsare proposed. The rst model uses the power delay prole and theKronecker structure of the second order moments of each channeltap to model the wideband MIMO channel while the second modelcombines a simple single-input single-output (SISO) model withthe same Kronecker structure of the second order moments.Monte-Carlo simulations are used to generate indoor MIMOchannel realizations according to the above models. The resultsare compared with the measured data and good agreement has beenobserved.</p>
39

Investigation of a small-sized omnidirectional antenna

Goncharova, Iuliia January 2012 (has links)
The purpose of this research is to find ways to create an omnidirectional antenna with high directivity in the vertical plane. The investigation is based on computer simulation using the program CST 2011. The objective is a narrow-band antenna that is omnidirectional in the horizontal plane and has maximum achievable directivity for a fixed size. Three of the most promising antenna designs are selected based on the current state of antenna technology. Their maximum directivities are estimated by means of well known relations in antenna theory. It is shown that the most suitable design is an omnidirectional antenna in the form of a cylindrical dipole antenna array with an active central dipole. For this antenna, excitation by means of a radial traveling wave, with a phase velocity smaller than speed of the light, is possible. It is found that for a certain value of a moderating factor it is possible to obtain a directivity that is 2.5 – 3 dB larger than that of a dipole or a linear antenna with uniform excitation. The antenna structures are modeled to determine the number of dipoles, their dimensions and the spacing between them that maximizes the directivity.
40

Mobile Communication Device Antennas for LTE/WWAN and LTE MIMO Operations

Kang, Ting-Wei 24 April 2011 (has links)
In this dissertation, not only the antenna and antenna array design techniques for fourth-generation mobile communication system are proposed, but also the specifications related to antenna bio-compatibility are studied. At first, two dual-wideband design techniques suitable to be applied for laptop computer applications for LTE/WWAN and LTE MIMO operations are proposed. The techniques can also be applied to internal tablet computer antennas. The isolation issues of MIMO antenna array of different mobile communication devices, such as laptop computer, tablet computer, and mobile phone, are then discussed. Finally, an analysis of body SAR for tablet computer applications are given and discussed.

Page generated in 0.056 seconds