• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 11
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 37
  • 32
  • 20
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A fast full-wave solver for the analysis of large planar finite periodic antenna arrays in grounded multilayered media

Mahachoklertwattana, Pongsak 14 September 2007 (has links)
No description available.
12

Novel Approaches to Overloaded Array Processing

Hicks, James E. Jr. 22 August 2003 (has links)
An antenna array is overloaded when the number of cochannel signals in its operating environment exceeds the number of elements. Conventional space-time array processing for narrow-band signals fails in overloaded environments. Overloaded array processing (OLAP) is most difficult when signals impinging on the array are near equal power, have tight excess bandwidth, and are of identical signal type. Despite the failure of conventional beamforming in such environments, OLAP becomes possible when a receiver exploits additional signal properties such as the finite-alphabet property and signal excess-bandwidth. This thesis proposes three approaches to signal extraction in overloaded environments, each providing a different tradeoff in performance and complexity. The first receiver architecture extracts signals from an overloaded environment through the use of MMSE interference rejection filtering embedded in a successive interference cancellation (SIC) architecture. The second receiver architecture enhances signal extraction performance by embedding a stronger interference rejection receiver, the reduced-state maximum aposteriori probability (RS-MAP) algorithm in a similar SIC architecture. The third receiver fine-tunes the performance of spatially reduced search joint detection (SRSJD) with the application of an energy focusing transform (EFT), a complexity reducing front-end linear pre-processor. A new type of EFT, the Energy Focusing Unitary Relaxed Transform (EFURT) is developed. This transform facilitates a continuous tradeoff between noise-enhancement and error-propagation in an SRSJD framework. EFURT is used to study the role of this tradeoff for SRSJD receivers in a variety of signal environments. It is found that for the environments studied in this thesis, SRSJD enjoys an aggressive reduction in interference at the expense of possible noise-enhancement. / Ph. D.
13

Design of an 8x8 cross-configuration Butler matrix with interchangeable 1D and 2D arrays

Bartlett, Chad 23 July 2019 (has links)
An ever-increasing demand for wider bandwidths in communication, radar, and imaging systems has emerged. In order to facilitate this growing demand, progressive research into millimeter-wave technologies has become vital in achieving next generation networks such as 5G. Being cost effective and easy to manufacture, Substrate Integrated Waveguide (SIW) circuits have been demonstrated as a viable candidate for high-frequency applications due to their low-loss, high quality-factor, and high power-handling capabilities.Research on beam-forming networks, specifically the Butler matrix, has demonstrated powerful beam-steering capabilities through the use of passive component networks. Through these clever configurations, a cost effective and robust option is available for us to use. In order to further millimeter-wave research in this area, this thesis presents a modified configuration of the Butler Matrix in SIW that is physically reconfigurable; by separating the Butler matrix from the antenna array at a pre-selected point, the array can be easily interchanged with other 1-Dimensional,and 2-Dimensional slot antenna arrays. Although this system does not fall under the rigorous definitions of Reconfigurable Antennas, it should be noted that the interchangeability of 1 and 2 dimensional arrays is not typically expressed in Butler matrix configurations. Design and simulations are carried out in CST Microwave Studio to inspect individual components as well as system characteristics. Circuit prototypes are then manufactured and tested in an anechoic chamber to validate simulation results and the design approach. / Graduate / 2020-07-17
14

Subwavelength Imaging using Scanning Near-field Antenna Arrays

Markley, Loic 20 June 2014 (has links)
This thesis examines a series of near-field antenna arrays used to perform subwavelength focusing and subwavelength imaging outside the extreme near field. For this purpose, slot and dipole arrays have been designed to produce a subwavelength focal spot at a distance of a quarter wavelength from the array. The dipole arrays are then used as scanning probes to produce images with subwavelength resolution based on perturbations in the scattered field. Unlike negative-refractive-index metamaterial superlenses, the imaging resolution is not affected by losses in the array. Furthermore, the arrays are simple to fabricate and are frequency scalable up to Terahertz frequencies and beyond. A near-field analogue to classic antenna-array theory called ``shifted beam theory'' is presented as a design tool. Based on the linear independence of element field patterns in the near field, this theory is very intuitive and provides a simplified way to calculate the element current weights necessary to generate a given target near-field pattern. Two-dimensional near-field subwavelength focusing is demonstrated using a slotted transmission-screen, or ``meta-screen'', under plane-wave incidence. At a distance of a quarter wavelength, the transverse electric field was measured in experiment to have a full-width half-maximum beamwidth of 0.40 by 0.27 wavelengths. This is compared to a single slot transmission-screen which had a beamwidth of 0.60 by 0.58 wavelengths. Broadside and end-fire dipole arrays are used to perform subwavelength imaging in one and two dimensions, respectively. The experimental minimum resolvable separation between two objects at a quarter-wavelength distance was 0.26 wavelengths using the end-fire array probe, as compared to 0.43 wavelengths for a single monopole probe. For an experiment using eight objects scattered over a one-square-wavelength area, however, the array probe imaging resolution remained around 0.25 wavelengths while the baseline monopole probe was no longer able to resolve any of the objects. Experiments were also conducted using objects buried behind a dielectric barrier as well as objects immersed within a dielectric. These results were consistent with the resolution improvements observed in the free-space resolution experiments.
15

Subwavelength Imaging using Scanning Near-field Antenna Arrays

Markley, Loic 20 June 2014 (has links)
This thesis examines a series of near-field antenna arrays used to perform subwavelength focusing and subwavelength imaging outside the extreme near field. For this purpose, slot and dipole arrays have been designed to produce a subwavelength focal spot at a distance of a quarter wavelength from the array. The dipole arrays are then used as scanning probes to produce images with subwavelength resolution based on perturbations in the scattered field. Unlike negative-refractive-index metamaterial superlenses, the imaging resolution is not affected by losses in the array. Furthermore, the arrays are simple to fabricate and are frequency scalable up to Terahertz frequencies and beyond. A near-field analogue to classic antenna-array theory called ``shifted beam theory'' is presented as a design tool. Based on the linear independence of element field patterns in the near field, this theory is very intuitive and provides a simplified way to calculate the element current weights necessary to generate a given target near-field pattern. Two-dimensional near-field subwavelength focusing is demonstrated using a slotted transmission-screen, or ``meta-screen'', under plane-wave incidence. At a distance of a quarter wavelength, the transverse electric field was measured in experiment to have a full-width half-maximum beamwidth of 0.40 by 0.27 wavelengths. This is compared to a single slot transmission-screen which had a beamwidth of 0.60 by 0.58 wavelengths. Broadside and end-fire dipole arrays are used to perform subwavelength imaging in one and two dimensions, respectively. The experimental minimum resolvable separation between two objects at a quarter-wavelength distance was 0.26 wavelengths using the end-fire array probe, as compared to 0.43 wavelengths for a single monopole probe. For an experiment using eight objects scattered over a one-square-wavelength area, however, the array probe imaging resolution remained around 0.25 wavelengths while the baseline monopole probe was no longer able to resolve any of the objects. Experiments were also conducted using objects buried behind a dielectric barrier as well as objects immersed within a dielectric. These results were consistent with the resolution improvements observed in the free-space resolution experiments.
16

Application of Synthetic Aperture Radar with Wi-Fi for Indoor Localization

Nafi, Kawser Wazed January 2016 (has links)
Indoor localization is the process of localizing people or objects inside a building in the same way GPS does in an outside environment. In recent years, researchers have successfully achieved improvement in indoor localization accuracy. Still there are many limitations to overcome in performing and achieving good accuracy in indoor localization. The interest in estimating the location of something inside a building with good accuracy is very strong. In this thesis we first propose an indoor localization technique relative to Wi-Fi access points along with a novel heuristic search based algorithm, named MuSLoc. Through simulation and comparative studies, we have shown that MuSLoc outperforms other indoor localization models without the help of fingerprinting or crowdsourcing about the environment. MuSLoc provides almost the same accuracy in LOS (Line of Sight) and NLOS (Non-Line of Sight) environments with regular infrastructure that has recently been provided by smart phones. This model doesn't require any additional hardware support in order to perform well. Further, we propose another indoor localization based Wi-Fi device tracker model, named MSTracker, which is able to track both moving and non-moving devices inside a building. This model is also free from specialized infrastructure and can perform well without any training data information. Through real time simulation and analysis we have shown that it performs more accurately than other available models. Through extensive simulations in a real time environment and analysis of performance comparatives with other available models, we have shown that both MuSLoc and MSTracker perform more accurately with COTS than any other method of indoor localization and tracking of objects inside a building. The complete package of MuSLoc and MSTracker can perform perfectly with recently available Wi-Fi modules and smartphones.
17

Reconfigurable Antenna Array Using the PIN-Diode-Switched Printed Square Spiral Element

Stamper, Corey M. 17 December 2021 (has links)
No description available.
18

Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

Nafe, Ahmed A. 03 1900 (has links)
Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum reciprocal phase shift of 132o and maximum non-reciprocal shift of 118o at 12 GHz. Additionally a slotted SIW antenna is designed and integrated with the phase shifter in an array format, demonstrating a beam scanning of ± 15o. The design is highly suitable for mobile automotive radars and satellite communications systems.
19

Antenne versatile intriquée / Versatile intricate antenna

Damaj, Lana 13 March 2013 (has links)
Cette thèse vise à développer des antennes large bande à double polarisation avec un filtre et un dispositif d’adaptation d’impédance et d’alimentation intégrés, que nous avons définies comme antennes versatiles intriquées. La largeur de la bande et la double polarisation permettent d’utiliser l’antenne avec différents standards et donc d’être versatile. D'autre part, le filtre pour rejeter les harmoniques supérieurs et le réseau d'adaptation sont des parties intégrantes de l'élément rayonnant et lui confèrent le caractère intriqué. La première étude porte sur la conception d'une antenne large bande à double polarisation avec un filtre intégré dans le dispositif d’alimentation. Le filtre permet de rejeter les harmoniques indésirables. La structure complète est compacte et de dimensions 0.9 λ0x0.9 λ0, λ0 étant la longueur d’onde en espace libre à la fréquence basse. Afin d’augmenter la compacité, nous présentons ensuite une antenne à suppression des harmoniques (HSA : Harmonic Suppressed Antenna) large bande à simple et à double polarisation. Ce travail explore les différentes techniques utilisées pour concevoir une HSA. Dans cette approche, l'élément rayonnant, le filtre qui permet de rejeter le rayonnement d’harmoniques hors bande et le réseau d'adaptation, qui sont traditionnellement des circuits séparés, sont intégrés dans une seule unité compacte. La taille totale de l'antenne est 0.53 λ0x0.53 λ0. Le dernier chapitre présente une des HSA développées associée à un conducteur magnétique artificiel non-uniforme. Cette structure permet l’obtention d’une antenne large bande de faible épaisseur et directive. / This thesis aims to develop wideband antennas interrelated with a filter, which we have defined as versatile intricate antennas. The antenna is versatile as it provides wide bandwidth (more than one octave) and has the capability to generate two orthogonal polarizations. On the other hand, the filter for harmonic rejection and the matching network are integrated parts of the radiating element and give it the intricate character.The first study is concentrated on designing a dual polarized antenna with a wide stop filter integrated to the feeding network. This filter enables to reject harmonics and unwanted response. The complete structure is compact with a size of 0.9 λ0x0.9 λ0, λ0 being the free space wavelength at the lowest frequency. In order to improve the compactness of the whole system and to cover more standards, we present a single and dual polarized wideband Harmonic Suppressed Antenna (HSA). This work explores the different techniques used to design a HAS. The proposed antenna is simple in structure but versatile in applications. In this approach, radiating element, filter for harmonic rejection and matching network, which are traditionally separated circuits, are incorporated into a single compact unit. The total size of the antenna is 0.53 λ0x0.53λ0. The final chapter aims to study the previous intricate antenna with a new wideband Artificial Magnetic Conductor (AMC) structure as reflector in order to obtain a low profile and directive antenna.
20

Active Sensor Array for UWB Breast-Cancer Screening

Tyagi, Vartika January 2021 (has links)
A microwave imaging system processes scattered electromagnetic fields in the microwave region to create images. It is an alternative or complementary imaging tool that can be used in breast cancer imaging. It employs non-ionising radiation and during measurement, compression of the scanned body part is avoided. These benefits potentially lead to safer and more comfortable examinations. It also has the potential to be both sensitive and specific to detect small tumors, whilst being much lower cost than current methods, such as magnetic resonant imaging, mammography and ultrasound. This thesis reports a multi-layer active antenna array for breast imaging using microwaves from 3 GHz to 8 GHz. The proposed structure resolves the outstanding problem in the design of large active antenna arrays for tissue imaging, namely, the isolation of the antennas from the electronic circuits. A ground plane within the multi-layer design separates the antenna array from the electronics array while providing shielding to the antennas from the back and improved power coupling into the tissue. The possibility of a high-speed vertical connector to provide interconnection between the antenna array and the mixer array is investigated and measurements show that it could be utilized for the frequency range from 3 GHz to 8 GHz. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0574 seconds