• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 12
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Resonant Antennas Based on Coupled Transmission-Line Metamaterials

Merola, Christopher S 01 January 2011 (has links) (PDF)
A novel microstrip patch antenna topology is presented for achieving a dual-band response with arbitrarily closely spaced resonances. This topology is based on a coupled transmission line structure in order to take advantage of the separation in propagation constants for parallel (even-mode) and anti-parallel (odd-mode) current modes. Applying a metamaterials inspired design approach, periodic reactive load­ings are used to design the underlying transmission line to have specific propagation constants necessary to realize a desired separation between two resonant frequencies. Using a single probe feed for a finite coupled line segment, both even-and odd-mode resonances can be excited to radiate efficiently at their respective design frequencies. The efficiency of the odd-mode radiation is enhanced by separating the two lines, while strong coupling is maintained by inserting a series of narrowly-separated thin loops between them. Several example resonant antenna designs, in the 2.45 GHz band, are presented. The directivities of these microstrip patch antennas are enhanced by optimizing the physical length of the resonant structure. For a resonant antenna obtained by cas­cading several unit cells of reactively loaded microstrip segments, dispersion analysis is employed for the unit-cell design. Maximum directivity is achieved by choosing the overall physical length to be slightly less than a half wavelength in free space at the design frequency. This gain optimization is applied to three coupled-line antennas, as well as a single resonance patch. Excellent agreement is observed between simulated and measured responses across all designs. The potential of loading the coupled line structure with active components is also explored. Varactor diodes are placed on coupled-line structures in two configurations. In one configuration, both resonant frequencies are affected. In the other configura­tion, only the odd-mode characteristics are reconfigured. In this way, the resonant frequency of either one or both modes can be adjusted by applying a DC bias voltage to the varactor diode loading elements. Two antennas, one employing each of these topologies, were designed and fabricated. Control of the resonant frequency over the predicted range through applying a bias voltage is observed with the fabricated prototypes.
22

Infrared Tapered Slot Antennas Coupled To Tunnel Diodes

Florence, Louis A 01 January 2012 (has links)
Tapered slot antennas (TSAs) have seen considerable application in the millimeter-wave portion of the spectrum. Desirable characteristics of TSAs include symmetric E- and H-plane antenna patterns, and broad non-resonant bandwidths. We investigate extension of TSA operation toward higher frequencies in the thermal infrared (IR), using a metal-oxide-metal diode as the detector. Several different infrared TSA design forms are fabricated using electronbeam lithography and specially developed thin-film processes. The angular antenna patterns of TSA-coupled diodes are measured at 10.6 micrometer wavelength in both E- and H-planes, and are compared to results of finite-element electromagnetic modeling using Ansoft HFSS. Parameter studies are carried out, correlating the geometric and material properties of several TSA design forms to numerical-model results and to measurements. A significant increase in antenna gain is noted for a dielectric-overcoat design. The traveling-wave behavior of the IR TSA structure is investigated using scattering near-field microscopy. The measured near-field data is compared to HFSS results. Suggestions for future research are included
23

Measurement of the Impulsive Noise Environment for Satellite-Mobile Radio Systems at 1.5 GHz.

Button, Mark D., Gardiner, John G., Glover, Ian A. January 2002 (has links)
No / Noise amplitude distribution measurements relevant to%satellite-mobile radio systems are reported. The rationale for the%measurements is outlined and the choice of measurement parameters%justified. The measurement equipment and measurement methodology are%described in detail. Results characterizing the elevation angle%distribution of impulsive noise are presented for rural, suburban and%urban environments and also for an arterial road (U.K. motorway)%carrying high density, fast moving traffic. Measurements of the levels%of impulsive noise to be expected in each environment for high- and%low-elevation satellite scenarios using appropriate antenna%configurations are also presented
24

Design and implementation of compact reconfigurable antennas for UWB and WLAN applications

Nikolaou, Symeon 09 July 2007 (has links)
The objective of this research is to realize compact and reconfigurable antennas for next generation Ultra Wide Band (UWB) and Wireless Local Area Network (WLAN) applications. The contributions of this research are, a methodology for designing compact UWB antennas, a compact WLAN prototype antenna with reconfigurable characteristics in both radiation pattern and frequency of operation, and compact UWB antennas with reconfigurable WLAN band rejection characteristics. For the completion of this dissertation, five research projects have been studied. First, a double exponentially tapered slot antenna with conformal shape, high gain, and consistent radiation patterns is implemented. The radiation pattern consistency results in minimum distortion for any transmitted pulse. The second and third projects involve an elliptical slot with a tuning uneven U-shaped stub and two cactus-shaped monopoles. The elliptical slot demonstrates omni-directional radiation patterns and compact size. As an improved iteration of the elliptical slot antenna, two cactus-shaped monopoles are implemented. The two prototypes occupy only 60% and 40%, respectively, of the area that the original elliptical slot occupies resulting in a significant size reduction, while maintaining omni-directional radiation patterns. Through the cactus-shaped monopoles some general design methodologies for UWB antennas are introduced and successfully applied. The fourth research topic introduced, concerns the study of compact elliptical UWB monopoles. Several prototypes of different geometrical characteristics were designed and tested. Broadband matching techniques and the integration of reconfigurable features on the elliptical radiator are investigated. For the reconfigurable UWB antenna, resonating elements are used to create a rejection band in the frequency range that is occupied by WLAN applications. The performance of several of the introduced slot and monopole antennas are tested when the antennas under detection are mounted and operate on non-planar surfaces. Finally, a reconfigurable annular slot antenna operating at the wireless local area network (WLAN) band is implemented. The proposed antenna demonstrates reconfigurable characteristics in both radiation pattern and return loss. All of the UWB antennas are fabricated on liquid crystal polymer (LCP) and can be easily integrated with active components on the same module using system on package (SoP) technology.
25

An efficient approach for node localisation and tracking in wireless sensor networks.

Mwila, Martin K. January 2014 (has links)
M. Tech. Electrical Engineering. / Objectives of this research is to use the node orientation, coupled with antenna radiation pattern of each node, to improve the Received Signal Strength (RSS) range measurement technique. As energy eciency is critical to WSNs, it is necessary to minimize both computation and communication costs in any operation involving WSNs,including during the localisation process. To achieve that, accelerometer measurements are used to reduce the number of iteration of the optimisation process during the refinement phase by computing more accurately an initial position for the optimisation using dead reckoning and approach the localisation in a distributed manner. The contribution of this is the investigation and development of an ecient localisation algorithm that can be used on a low cost wireless sensor board developed using existing technology. A review of the existing methods is conducted to highlight the key aspect to consider when developing an ecient localisation algorithms. A mathematical modelling of the proposed algorithm is developed and simulation is conducted to analyse the performance of the algorithm. An exhaustive test bed hardware has been designed on which the algorithm can to be validated.
26

Radiation Pattern Reconfigurable Horn Antenna Based on Parasitic Layer Concept

Tanagardi, Mehmet 01 August 2019 (has links)
In recent years, multi-functional reconfigurable antennas (MRA) has attracted much attention in wireless communication. The reconfigurable antenna can adapt itself with changing system conditions, and it can provide different multi-functionalities which can give better system performances. Instead of using multiple antennas, a single reconfigurable antenna can provide the same performance and occupy less space. By using the parasitic layer technique, an antenna can be turned into a reconfigurable antenna. The main objective of this thesis is to study radiation pattern reconfiguration of the horn antenna by using the parasitic layer concept. The MRA consists of a single horn, dielectric loaded truncated pyramid (DLTP), and the parasitic layer. The antenna that is chosen in this thesis is the horn antenna because it provides high directivity. DLTP is used for magnification purpose. The results show that three modes of operations that provide better performances compared to the single horn antenna are achieved.
27

Miniaturized tunable conical helix antenna

Zhu, F., Ghazaany, Tahereh S., Abd-Alhameed, Raed, Jones, Steven M.R., Noras, James M., Suggett, T., Marker, S. January 2014 (has links)
No / A miniaturized conical helix antenna is presented, which displays vertical polarization with electrically small dimensions of 10mm×10mm×45mm. The resonance of the antenna is made tunable by adding a variable digital MEMS capacitor load at the bottom of the helix, giving a tuning range of 316 MHz to 400 MHz. The antenna demonstrates considerable impedance matching bandwidth and gain over the entire tuning frequency band. Most importantly, the antenna is capable of compact, flexible and easy integration into a wireless device package or for platform installation. / Datong of Seven Technology Group, for their support under the KTP project grant No. 008734.

Page generated in 0.1245 seconds