• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The anti-estrogenic and liver metabolic effects of DHAA in rainbow trout (oncorhynchus mykiss)

Pandelides, Zacharias 01 August 2011 (has links)
Recent studies have shown that dehydroabietic acid (DHAA), a resin acid present in pulp and paper mills, may have anti-estrogenic effects in fish. A chronic-exposure toxicity experiment using immature rainbow trout (Oncorhynchus mykiss) was conducted in order to assess the endocrine disrupting and liver metabolic effects of the wood extractives DHAA and β- sitosterol (BS) regularly present in pulp and paper mills and the model estrogen 17β-estradiol (E2). It was found that exposure to 5 ppm of E2 significantly increased hepatosomatic index (HSI), vitellogenin (VTG) and plasma sorbitol dehydrogenase (SDH). This effect was reduced by mixing E2 with DHAA, indicating that DHAA does not cause its anti-estrogenic effects indirectly due to liver damage. Exposure to 5 ppm of DHAA caused a significant increase in liver citrate synthase (CS), and liver ethoxyresorufin-O-deethylase (EROD) activity after 7 days, however, the fish recovered by 28 days. This study also determined the effect of 14 different pulp and paper mill effluent extracts on liver enzyme metabolism through alterations in the activity of liver lactate dehydrogenase activity (LDH) and CS. This activity varied greatly between mills but most showed an induction of CS after 28 days exposure through i.p. injection. The results of the study indicate that DHAA may alter energy metabolism as well as cause anti-estrogenic effects in female juvenile rainbow trout. / UOIT
2

Phytochemical analysis of Momordica cardiospermoides crude acetone and methanol leaf extracts and their effects on MDA-MB-231 cell migration and invasiveness

Kgakishe, Mante Dolly January 2021 (has links)
Thesis (MSc.(Biochemistry)) -- University of Limpopo, 2021 / Drug discovery from medicinal plants continues to play an important role in the development of anticancer agents, this is because medicinal plants are reservoirs of bioactive compounds that exert a plethora of pharmacological effects on human beings. This study aimed to analyse the phytochemical constituents of the Momordica cardiospermoides crude acetone and methanol leaf extracts as well as investigate their potential anti-metastatic effects on the MDA-MB-231 breast cancer cell line. Momordica cardiospermoides leaves were extracted with absolute methanol or acetone to produce crude methanol and acetone extracts, respectively. The extracts were then screened and analysed for phytochemicals using thin layer chromatography, qualitative and quantitative phytochemical tests, and their antioxidant activity was determined using the quantitative 2,2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging activity assay. The fingerprint profiles of the M. cardiospermoides leaf extracts revealed that compounds of the acetone extracts were optimally separated in the nonpolar mobile phase (TAE), whereas those of the methanol extract separated best in the polar mobile phase (EMW), thereby suggesting that the crude acetone and methanol extracts had more non-polar and polar compounds present, respectively. Furthermore, the qualitative phytochemical analysis indicated the presence of various phytochemicals such as flavonoids, steroids, coumarins, and tannins in both plant extracts, however, saponins were found present in the methanol extract and not in the acetone extract. Moreover, quantification of major phytochemicals revealed that the acetone extract had the highest total phenolic content (23.0683 mg GAE/g), total tannin content (22.0442 mg GAE/g) and total flavonoid (32.6933 mg QE/g) content as compared to the methanol extract (14.2349 mg GAE/g, 11.3164 mg GAE/g and 7.692 mg QE/g respectively). The DPPH free radical scavenging activity assay revealed that the extracts exhibited an increase in percentage inhibition/ DPPH scavenging effect, with an increase in extract concentration. The results also revealed that the acetone extract possessed a higher radical scavenging activity as compared to the methanol extract. These results are in correlation with the quantitative analysis of the extracts, as all the major phytochemicals found in higher amounts in the acetone extract have antioxidant properties. The extracts were then assessed in vitro for their cytotoxic effects on MDA MB-231 breast cancer cells and HEK 293 cells using the cell count and viability assay and the results obtained revealed a concentration-dependent decrease in the viability of MDA-MB-231 cells at 24 hours of treatment with either the acetone or methanol extract. Comparatively, treatment of HEK 293 cells with the acetone extract resulted in a significant decrease in the percentage of viable cells, whereas treatment with the methanol extract had no significant effect on the viability of HEK 293 cells, as the percentage of viable cells was maintained at 85–98% at 24 hours of treatment. These results also revealed that the methanol extract is more selective to cancer cells in comparison to the acetone extract, suggesting that the methanol extract is a better antineoplastic candidate. The mode of cell death induced by the methanol or acetone extracts was assessed using the acridine orange and ethidium bromide dual staining assay and the annexin V and dead cell kit. The results from the acridine orange/ethidium bromide dual staining assay showed that both extracts induced nuclei and cellular morphological changes in a concentration-depended manner, at 24 hours of treatment. Moreover, the annexin V and dead assay kit results revealed that the acetone extract induced necrotic cell death, while the methanol extract induced apoptotic cell death. Since the acetone extract was shown to be non-selective towards normal cells and induced necrotic cell death, it was discontinued for further assays. The effect of the methanol extract on MDA-MB-231 cell migration and attachment was determined using the wound healing assay and the adhesion assay. The results revealed that treatment with 150 or 300 µg/ml significantly suppressed MDA-MB-231 cell migration, associated with serpin E1 downregulation and TIMP-1 upregulation, at 24 hours of treatment. Moreover, treatment with the methanol extract also significant inhibited MDA-MB-231 cell adhesion in a concentration-dependent manner, as evident by the decrease in the number of crystal violet stained cells. The effect of the methanol extract on the expression of matrix metalloproteinase-2 and -9 was assessed using western blotting, and the results revealed that the extract significantly downregulated the expression of both MMP-2 and -9, suggesting that the methanol extract has inhibitory effects on MDA-MB-231 cell invasion. The human angiogenesis antibody array kit was then used to determine the effect of the extract on the expression of angiogenesis-related proteins. Treatment with 150 or 300 µg/ml of the extract significantly upregulated the expression levels of tissue inhibitor of metalloproteinases (TIMP) -1 and thrombospondin-1 in a concentration-dependent manner. The results also revealed a significant downregulation in the expression of serpin E1, in a concentration-dependent manner, in comparison to the untreated control. However, the expression of uPA, VEGF, and IGFBP-1, 2 and -3 was upregulated following treatment with 150 and 300 µg/ml of the extract. In conclusion, the current study demonstrated the potential of M. cardiospermoides crude methanol extract as an effective anti-metastatic agent or a source of compounds with anti-metastatic properties / South African Medical Research Council (SAMRC) Research Capacity Development Initiative and National Research Foundation (NRF)

Page generated in 0.0528 seconds