• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Type IV Pilus Assembly ATPase PilB as a Regulator of Biofilm Formation and an Antivirulence Target

Dye, Keane 02 June 2022 (has links)
Bacterial type IV pili (T4P) are filamentous surface appendages with a variety of functions including motility, surface attachment, and biofilm formation. In many species of bacteria a clear understanding of how the functions of T4P in lifestyle switching are regulated remains to be elucidated. Here, we focus on understanding the regulation of the T4P assembly ATPase PilB. We examined its interactions with the secondary messenger cyclic-di-GMP (cdG). Specifically we investigated how cdG binding regulates PilB functions not only as the assembly ATPase, but also as an EPS signaling molecule in Myxococcus xanthus biofilm regulation. Chapter 2 focuses on the development of a microplate-based biofilm assay for M. xanthus. This new assay allows for the analysis of the M. xanthus submerged biofilms under vegetative conditions in a high throughput format which has been absent in the published literature. M. xanthus biofilm formation tightly correlates with EPS production, suggesting that the assay can be used as a convenient method of examining EPS production. Chapter 3 examines the regulation of M. xanthus PilB (MxPilB) by cdG binding in vivo. We carried out a mutational analysis of the MshEN cdG binding domain in MxPilB. Mutations were created that either diverge with or converge from the MshEN consensus sequence. These two classes of MxPilB variants are expected to either decrease or increase cdG binding affinity, respectively. We examined the motility, EPS production, and piliation phenotypes of these mutants. Our results were consistent with a model where the function of MxPilB is altered in response to cdG binding, and suggesting that PilB responds to different thresholds of cdG concentration. In Chapter 4, we examine the ligand binding to the N-terminal cdG binding domain and C-terminal ATPase domain of Chloracidobacterium thermophilum PilB (CtPilB) in vitro. Our results confirm that these two domains bind to their respective ligands specifically, and demonstrate these domains communicate with each other in response to ligand binding. The results from all of the studies help us to establish a model where cdG binding fine tunes the functions of PilB to regulate the switch of bacteria between the motile and planktonic states. In addition to their roles in motility and biofilm formation, T4P are key virulence factors in many significant human pathogens. Antivirulence chemotherapeutics are considered to be a promising alternative to antibiotics, as they target disease processes rather than bacterial viability. Because PilB is essential for T4P biogenesis, we sought to identify PilB inhibitors for the development of antivirulence therapies. In Chapter 5, we describe the development of the first high throughput screen (HTS), for PilB inhibitors. This assay is uses the reduction of the binding of a fluorescent ATP analog to CtPilB in vitro, leading to the discovery of the plant flavonoid quercetin as a PilB inhibitor. Using M. xanthus as a model a bacterium, quercetin was found to inhibit T4P-dependent motility and T4P assembly in vivo. Builds on this initial success with CtPilB, Chapter 6 describes the development and implementation of a second HTS based on the inhibition of CtPilB as an ATPase. Screening a large chemical library led to the identification of benserazide and levodopa as CtPilB inhibitors. We show that both compounds inhibit T4P assembly in M. xanthus without any detrimental effects on bacterial growth. Furthermore we demonstrate that both levodopa and benserazide inhibit T4P-mediated motility in Acinetobacter nosocomialis, a human pathogen, providing the first evidence that the compounds identified with CtPilB can be effective against a pathogenic bacterium. Both of these studies validate the effectiveness not only of our HTSs, with of CtPilB as a model protein for the identification of PilB inhibitors. / Doctor of Philosophy / Bacteria can be motile or sessile. Motile bacteria can use hair like structures on their surface, called pili, to move in their natural environment, whereas sessile bacteria produce intricate structures attached to solid surfaces known as biofilms. Bacteria are able to switch between being motile and sessile states depending on their environment conditions. However, it isn't clear how this switch is controlled in bacteria that use pili to move. To answer this question, we studied how PilB the protein that assembles pili, might control this switching process. We specifically investigated PilB because it has two known roles. The first is that it can assemble pili, to enable pili-mediated motility. The second is that it can stimulate or promote biofilm formation. This places PilB at the intersection of these two lifestyles, suggesting that this protein may play a key role in deciding whether a bacterium is to be motile or sessile. Another important reason to understand how PilB functions is because pili are used by some antibiotic resistant pathogenic bacteria. Since PilB is essential for the formation of pili, if the actions of PilB could be blocked, bacteria would be unable to make pili. This could stop bacteria from causing disease. By searching for new chemicals which stop PilB from creating pili, we can potentially identify new drugs to treat bacterial infections.
2

Régulation, expression in situ et biostimulation de l'activité quorum-quenching d'un agent de biocontrôle : Rhodococcus erythropolis / Regulation, in situ expression and biostimulation of the quorum-quenching activity of a biocontrol agent : Rhodococcus erythropolis

Chane, Andrea 10 July 2018 (has links)
Le biocontrôle est défini comme un ensemble de méthodes de protection des végétaux par l’utilisation de mécanismes naturels. Son principe repose sur la gestion des équilibres des populations d’agresseurs plutôt que sur leur éradication. La protection des cultures de la pomme de terre Solanum tuberosum contre les bactéries pectinolytiques (Dickeya et Pectobacterium) a été précédemment proposée comme une application du biocontrôle. Il s’agit ici de perturber (quencher) la communication quorum-sensing (QS) utilisée par l’agent pathogène pour coordonner son attaque et sa virulence. Afin d’optimiser cette méthode de lutte par quorum-quenching (QQ) et d’en contrôler l’efficacité, nous avons étudié la voiecatabolique des -lactones d’un agent de biocontrôle, la bactérie Rhodococcus erythropolis. Cette voie est impliquée dans la dégradation des signaux N-acyl-homoserine lactones du pathogène. Nous avons d’abord étudié le rôle du répresseur QsdR ainsi que la régulation transcriptionnelle de l’opéron qsd impliqué dans la dégradation des signaux. La compréhension de cette régulation a permis de générer des biosenseurs capables de monitorer les activités QS du pathogène et QQ du protecteur. Sous microscopie confocale à balayage laser, ces outils ont apporté des preuves visuelles du rôle et du lien entre ces deux activités dans les tissus du tubercule. Enfin, la faible spécificité du répresseur QsdR pour ses ligands, apermis de proposer la -caprolactone, un analogue structural des signaux de QS, comme inducteur de l’opéron qsd. Dans l’ensemble, ces travaux permettent d’approfondir nos connaissances sur le rôle et le fonctionnement du QQ chez R. erythropolis. Ils permettent aussi d’envisager le contrôle de la maladie via un agent dont l’activité de QQ pourra être biostimulée par des lactones peu coûteuses lors de la formulation puis de l’épandage aux champs. / Biocontrol is defined as a set of plant protection methods through the use of natural mechanisms. Its principle involves the control of populations of aggressors rather than their eradication. The protection of the potato Solanum tuberosum against soft-rot bacteria (Dickeya and Pectobacterium) has been previously proposed as an application of biocontrol. This involves disturbing the quorum-sensing (QS) communication used by the pathogen to coordinate its attack and virulence. In order to optimize this quorum-quenching (QQ) biocontrol method and to control its effectiveness, we have studied the catabolic pathway of -lactones of a biocontrol agent, the Rhodococcus erythropolis bacterium. This pathway is involved in the degradation of the pathogen N-acyl-homoserine lactones signals. We firststudied the role of the QsdR repressor as well as the transcriptional regulation of the qsd operon involved in signal degradation. The understanding of this regulation has made it possible to generate biosensors capable of monitoring the QS of the pathogen and QQ of the protector. Under confocal laser scanning microscopy, these tools provided visual evidence of the role and link between these two activities in the tuber tissues. Finally, the low specificity of the QsdR repressor for its ligands made it possible to propose the -caprolactone, a structural analog of QS signals, as an inducer of the qsd operon. Overall, this work provides insight into the role and function of QQ in R. erythropolis. It also allows to envisage the control of the disease using a biocontrol agent whose QQ activity can be biostimulated by inexpensive lactones during formulation then spreading in the field.
3

Molécules anti-facteurs de virulence : étude de l’efficacité et de l’amélioration d’une molécule inhibitrice du système de sécrétion de type IV de Helicobacter pylori

Morin, Claire 08 1900 (has links)
Helicobacter pylori est une bactérie à Gram négatif qui colonise plus de 50% de la population humaine. Cette bactérie est l'un des pathogènes les plus présents dans la population et la colonisation se fait dans l'enfance et l'adolescence. H. pylori est responsable de l'apparition de maladies gastriques chez l'humain comme des ulcères gastriques, mais aussi des cancers gastriques. Plusieurs mécanismes contribuent aux maladies gastriques dont une infection chronique à long terme ainsi que des facteurs de virulence comme le système de sécrétion de type 4 (SST4). Le SST4 forme une seringue protéique utilisée par la bactérie pour injecter la protéine CagA dans les cellules humaines. Cette protéine a été la première protéine bactérienne classifiée comme une oncoprotéine par sa capacite à interférer et modifier de nombreuses fonctions et signaux métaboliques des cellules épithéliales gastriques. Afin d'éradiquer Helicobacter, une antibiothérapie est utilisée, cependant depuis les 10 dernières années plus de 50% des bactéries isolées de patients ont été identifiés comme étant porteuses de résistances contre aux moins un antibiotique de première ligne. L’utilisation de petites molécules organiques capables d'interférer avec les facteurs de virulence est une alternative intéressante à la thérapie aux antibiotiques. L'utilisation de ces molécules possède des avantages dont la faible pression de sélection de résistance parce qu’elles n’impactent pas des fonctions vitales des bactéries. Le SST4 de H. pylori est composé de nombreuses protéines essentielles qui pourraient être de potentielles cibles pour des molécules inhibitrices. Nous avons choisi la cible Cagα, une ATPase homologue à VirB11 de Agrobacterium tumefaciens. Cette protéine est essentielle pour l’injection de CagA. Précédemment, notre laboratoire a identifié une petite molécule nommée 1G2 qui était capable d’interagir avec Cagα et de diminuer l’induction de l’interleukine 8 produit par les cellules gastriques lors de l’infection par des souches de H. pylori possédant un SST4 fonctionnel. A partir d’une structure cristallographique de Cagα liée à 1G2 et nous avons créé des protéines Cagα avec des mutations aux site de liaison de 1G2. En utilisant la fluorimétrie différentielle à balayage (DSF) nous avons pu identifier les acides aminés qui contribuent à la liaison de 1G2 (K41, R73 et F39). Basé sur cette information nous avons utilisé la chimie médicinale pour créer une librairie de molécules dérivées de 1G2 dans le but d’identifier des inhibiteurs plus puissants. Après avoir éliminé les molécules ayant un effet toxique sur les cellules gastriques et H. pylori, nous avons sélectionné cinq molécules (1313, 1338, 2886, 2889 et 2902) qui inhibent la production d’IL-8 plus que 1G2 dans notre modèle d’infection cellulaire. Nous avons montré par DSF que les molécules interagissent toujours avec Cagα et 1338, 2889 et 2902 sont des inhibiteurs plus puissants de son activité d’ATPase. Avec le modèle d’infection, nous avons déterminé que les cinq molécules n’affectent par la présence de CagA dans le lysat de l’infection. Cependant, nous avons observé par microscopie électronique à balayage que le SST4 pilus n’était pas présent en présence des inhibiteurs. En plus, nous avons testé les effets de 1G2 sur des souches de H. pylori résistantes, à un ou plusieurs antibiotiques de première ligne, isolées de biopsie gastriques de patients. Comme dans le cas de la bactérie modèle de laboratoire, nous avons observé une diminution de l’induction des IL-8 lors de l’infection ainsi qu’une inhibition de la formation du SST4 pilus. Nous avons aussi identifié que le gène de la protéine Cagα d’une des bactéries résistantes à 1G2 (souche #3822) porte un remplacement de R73 à K ce qui pourrait expliquer la résistance à 1G2. Pour conclure, nous avons dans cette étude caractérisé le site de liaison de 1G2 à Cagα et nous avons identifié des molécules qui sont plus puissantes comme inhibiteurs que 1G2. / Helicobacter pylori is a Gram-negative bacterium that colonizes more than 50% of the human population. This bacterium is one of the most common pathogens in the population and colonization occurs in childhood and adolescence. H. pylori is implicated in the manifestation of gastric diseases in humans such as gastric ulcers and also gastric cancer. Several mechanisms are involved in the formation of gastric diseases including long-term chronic infection as well as virulence factors such as the type 4 secretion system (T4SS). The T4SS forms a protein syringe used by the bacteria to inject the protein CagA into mammalian cells. This protein is the first bacterial protein classified as an oncoprotein by its ability to interact with numerous metabolic functions of gastric epithelial cells. To eradicate Helicobacter, antibiotic therapy is used, but for the last 10 years more than 50% of the bacteria isolated from patients have been identified as carrying resistance against at least one first-line antibiotic. The use of small molecules capable of interfering with virulence factors is being studied as an alternative to antibiotic therapy. The use of these molecules has many advantages, and they may cause lower selection pressure for resistance than antibiotics. The H. pylori T4SS is composed of many essential proteins that could be potential targets for inhibitory molecules. We chose the target Cagα, an ATPase homologous to the model VirB11 from Agrobacterium tumefaciens. This protein is essential for the injection of CagA. Previously, our laboratory identified a small molecule coined 1G2 that interacts with Cagα and decreases the induction of interleukin-8 produced by gastric cells upon infection with H. pylori strains with functional T4SS. Based on a crystallographic study of Cagα bound to 1G2, we created Cagα proteins with mutations at the 1G2 binding site. Using differential scanning fluorimetry, we identified amino acids that contribute to 1G2 binding (K41, R73 and F39). Based on these observations, we used medicinal chemistry to create a library of molecules derived from 1G2 to create more potent inhibitors. After eliminating the molecules with a toxic effect on gastric cells and H. pylori growth, we selected five molecules with stronger effects than 1G2 on IL8 induction in our cell infection model (1313, 1338, 2886, 2889 and 2902). We observed by DSF that the molecules interact with Cagα and 1338, 2889 and 2902 are stronger inhibitors of the ATPase 8 activity than 1G2. With our infection model, we determined that the five molecules do not affect the presence of CagA. However, by scanning electron microscopy we observed that the T4SS pilus was not present. In addition to the tests on a laboratory model bacterium, we evaluated 1G2 on resistant strains of H. pylori isolated from gastric biopsy from patients. Similar to the laboratory model bacterium, 1G2 decreased IL-8 induction and inhibited T4SS pilus formation. We have also identified that strain #3822 that is resistant to 1G2 carries a R73 to K mutation in the Cagα gene, which could explain the 1G2 resistance. To conclude, we have here characterized the 1G2 binding site on Cagα and we created inhibitors that are more potent than 1G2.
4

Pilicides and Curlicides : Design, synthesis, and evaluation of novel antibacterial agents targeting bacterial virulence

Chorell, Erik January 2010 (has links)
New strategies are needed to counter the growing problem of bacterial resistance to antibiotics. One such strategy is to design compounds that target bacterial virulence, which could work separately or in concert with conventional bacteriostatic or bactericidal antibiotics. Pilicides are a class of compounds based on a ring-fused 2-pyridone scaffold that target bacterial virulence by blocking the chaperone/usher pathway in E. coli and thereby inhibit the assembly of pili. This thesis describes the design, synthesis, and biological evaluation of compounds based on the pilicide scaffold with the goal of improving the pilicides and expanding their utility. Synthetic pathways have been developed to enable the introduction of substituents at the C-2 position of the pilicide scaffold. Biological evaluation of these compounds demonstrated that some C-2 substituents give rise to significant increases in potency. X-ray crystallography was used to elucidate the structural basis of this improved biological activity. Furthermore, improved methods for the preparation of oxygen-analogues and C-7 substituted derivatives of the pilicide scaffold have been developed. These new methods were used in combination with existing strategies to decorate the pilicide scaffold as part of a multivariate design approach to improve the pilicides and generate structure activity relationships (SARs). Fluorescent pilicides were prepared using a strategy where selected substituents were replaced with fluorophores having similar physicochemical properties as the original substituents. Many of the synthesized fluorescent compounds displayed potent pilicide activities and can thus be used to study the complex interactions between pilicide and bacteria. For example, when E. coli was treated with fluorescent pilicides, it was found that the compounds were not uniformly distributed throughout the bacterial population, suggesting that the compounds are primarily associated to bacteria with specific properties. Finally, by studying compounds designed to inhibit the aggregation of Aβ, it was found that some compounds based on the pilicide scaffold inhibit the formation of the functional bacterial amyloid fibers known as curli; these compounds are referred to as 'curlicides'. Some of the curlicides also prevent the formation of pili and thus exhibit dual pilicide-curlicide activity. The potential utility of such 'dual-action' compounds was highlighted by a study of one of the more potent dual pilicide-curlicides in a murine UTI model were the compound was found to significantly attenuate virulence in vivo.

Page generated in 0.0721 seconds