Spelling suggestions: "subject:"antifairese."" "subject:"antipirese.""
1 |
O surgimento dos números irracionais / The emergence of irrational numbersJosé Souto Sobrinho Filho 25 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este é um trabalho de pesquisa sobre um conjunto de números (irracionais) que é pouco trabalhado no ensino básico de matemática. Foi uma procura muito interessante e enriquecedora, pois encontrei matemáticos e historiadores com visões bem diferentes. Muitos deles não aceitavam este novo conjunto. Para Leopold Kronecker, só existia o conjunto dos números inteiros. Já para Cantor e Dedekind, o aparecimento dos irracionais foi extremamente importante para o desenvolvimento da matemática, abrindo novos horizontes. Menciono aqui um pouco da vida e da obra de alguns matemáticos que se envolveram com os números irracionais. Tratamos ainda da descoberta dos incomensuráveis, ou seja, como iniciou-se o problema da incomensurabilidade, e do retângulo áureo e sua importância em outras áreas. O trabalho mostra também dois grupos de números que não são mencionados quando ensinamos equações algébricas, que são os números algébricos e os números transcendentes, assim como teoremas essenciais para a prova da transcendência dos irracionais especiais e . Por fim, proponho uma aula para uma turma do 3 ano do Ensino Médio com o objetivo de mostrar a irracionalidade de alguns números, usando os teoremas pertinentes / This is a research about a set of numbers (irrationals) that is little explored in secondary school mathematics teaching. It was a very interesting and enriching search, because quite contrary facts were found. Several 19th century mathematicians did not accept this new set of numbers. To Leopold kronecker, only the set of the integers existed. To Cantor and Dedekind, the irrational numbers were extremely important for the development of mathematics, opening new horizons. I also mention the life and work of some mathematicians who were involved with the irrational numbers the discovery of the incommensurability was iniciated. The golden rectangle and its importance in other areas. The work also presents two groups of numbers that are not mentioned when algebraic equations are taught, the algebraic numbers and transcendental numbers. Essential theorems for the proof of the special irrational numbers e . Finnaly, I propose a lesson to a 3rd year high school class in order to show the irrationality of some numbers, using the relevant theorems
|
2 |
O surgimento dos números irracionais / The emergence of irrational numbersJosé Souto Sobrinho Filho 25 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este é um trabalho de pesquisa sobre um conjunto de números (irracionais) que é pouco trabalhado no ensino básico de matemática. Foi uma procura muito interessante e enriquecedora, pois encontrei matemáticos e historiadores com visões bem diferentes. Muitos deles não aceitavam este novo conjunto. Para Leopold Kronecker, só existia o conjunto dos números inteiros. Já para Cantor e Dedekind, o aparecimento dos irracionais foi extremamente importante para o desenvolvimento da matemática, abrindo novos horizontes. Menciono aqui um pouco da vida e da obra de alguns matemáticos que se envolveram com os números irracionais. Tratamos ainda da descoberta dos incomensuráveis, ou seja, como iniciou-se o problema da incomensurabilidade, e do retângulo áureo e sua importância em outras áreas. O trabalho mostra também dois grupos de números que não são mencionados quando ensinamos equações algébricas, que são os números algébricos e os números transcendentes, assim como teoremas essenciais para a prova da transcendência dos irracionais especiais e . Por fim, proponho uma aula para uma turma do 3 ano do Ensino Médio com o objetivo de mostrar a irracionalidade de alguns números, usando os teoremas pertinentes / This is a research about a set of numbers (irrationals) that is little explored in secondary school mathematics teaching. It was a very interesting and enriching search, because quite contrary facts were found. Several 19th century mathematicians did not accept this new set of numbers. To Leopold kronecker, only the set of the integers existed. To Cantor and Dedekind, the irrational numbers were extremely important for the development of mathematics, opening new horizons. I also mention the life and work of some mathematicians who were involved with the irrational numbers the discovery of the incommensurability was iniciated. The golden rectangle and its importance in other areas. The work also presents two groups of numbers that are not mentioned when algebraic equations are taught, the algebraic numbers and transcendental numbers. Essential theorems for the proof of the special irrational numbers e . Finnaly, I propose a lesson to a 3rd year high school class in order to show the irrationality of some numbers, using the relevant theorems
|
Page generated in 0.0471 seconds