• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Porous Metal Oxides and Their Applications

Tien, Wei-Chen 15 July 2012 (has links)
Porous metal oxides formed by supercritical carbon dioxide (SCCO2) treatments at low temperature were used for displays, solar cells, and light emitting diodes (LEDs) applications. The SCCO2 fluid, also known as green solvents, exhibits low viscosity, low surface tension and high diffusivity as gases, and high density and solubility same with liquids. In this thesis, we successfully fabricated porous antimony-doped tin oxide (ATO) and porous indium tin oxide (ITO) by the SCCO2 treatments. In addition, the treatment can also be used to improve the work function and surface energy of ITO anode of an organic LED (OLED). The performance of the OLEDs was drastically enhanced in comparison with that of the devices without any ITO surface treatments. First, the porous ATO films were formed by the SCCO2 treatment for absorption of silver molecules in silver electro deposition devices. The porosity, resistivity and average optical transmittance of the porous ATO film in visible wavelength were 43.1%, 3 £[-cm and 90.4%, respectively. For the silver electro deposition devices with the porous ATO film, the transmittance contrast ratio of larger than 12 in visible spectrum was obtained at an operating voltage of 1.5 V. Furthermore, for the 0.25 cm2 device, the switching time of 4.5 seconds was achieved by applying a square-wave voltage ranging from 1.5 to -0.2 V between the electrodes. On the other hand, the porous ITO with low refractive index was prepared by SCCO2/IPA treatment on gel-coated ITO thin films. The high refractive index of the ITO film was achieved by long-throw radio-frequency magnetron sputtering technique at room temperature. The index contrast (£Gn) was higher than 0.6 between porous ITO and sputtered ITO films. The large £Gn is useful for fabricating conductive anti-reflection (AR) and high reflection (HR) structures using the porous ITO on sputtered ITO bilayers. The weighted average reflectance and transmittance of 4.3% and 83.1% were achieved for the double-layer ITO AR electrode with a sheet resistance of 1.1 K£[/¡E. For HR structures, the reflectance and sheet resistance were 87.9% and 35 £[/¡E with 4 periods ITO bilayers. Finally, the SCCO2 treatments with strong oxidizer H2O2 were proposed to modify surface property of ITO anode of a fluorescent OLED. The highest work function and surface energy of 5.5 eV and 74.8 mJ/m2 was achieved by the SCCO2/H2O2 treatment. For the OLED with 15 min SCCO2 treatment at 4000 psi, the turn-on voltage and maximum power efficiency of 6.5 V and 1.94 lm/W were obtained. The power efficiency was 19.3% and 33.8% higher than those of the OLEDs with oxygen plasma treated and as-cleaned ITO anodes.
2

Investigation of the anodes of PEM water electrolyzers by operando synchrotron-based photoemission spectroscopy / Etude in operando d’anodes d’électrolyseurs de l'eau de type PEM par spectroscopie de photoémission avec le rayonnement synchrotron

Saveleva, Viktoriia 29 January 2018 (has links)
Le développement de catalyseurs de la réaction de dégagement de l’oxygène (OER) pour les électrolyseurs à membrane échangeuse de protons (PEM) dépend de la compréhension du mécanisme de cette réaction. Cette thèse est consacrée à l'application de la spectroscopie d’émission de photoélectrons induits par rayons X (XPS) et de la spectroscopie de structure près du front d'absorption de rayons X (NEXAFS) operando sous une pression proche de l'ambiante (NAP) dans le but d’étudier les mécanismes de la réaction d’oxydation de l’eau sur des anodes à base d’iridium et de ruthénium et leurs dégradation dans les conditions de la réaction. Cette thèse montre les mécanismes différents de la réaction OER pour les anodes à base d’Ir et de Ru impliquant respectivement des transitions anioniques (formation d’espèce OI- électrophile) ou cationiques (formation des espèces de Ru avec l’état d'oxydation supérieur à IV) quelle que soit la nature (thermique ou électrochimique) des oxydes. / Development of oxygen evolution reaction (OER) catalysts for proton exchange membrane water electrolysis technology depends on the understanding of the OER mechanism. This thesis is devoted to the application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near edge X-ray absorption fine structure (NEXAFS) techniques for operando investigation of the Ir, Ru - based anodes. For Ru-based systems, we observe the potential-induced irreversible transition of Ru (IV) from an anhydrous to a hydrated form, while the former is stabilized in the presence of Ir. Regarding single Ir-based anodes, the analysis of O K edge spectra reveals formation of electrophilic oxygen OI- as an OER intermediate. Higher stability of Ir catalysts supported on antimony-doped tin oxide (ATO) is related to their lower oxidation. This work demonstrates different OER mechanisms on Ir, Ru-based anodes involving anion and cation red-ox chemistry, correspondingly, regardless the oxide nature.

Page generated in 0.0865 seconds