• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 152
  • 32
  • 17
  • 13
  • 13
  • 13
  • 12
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 461
  • 104
  • 81
  • 62
  • 54
  • 40
  • 38
  • 36
  • 34
  • 32
  • 32
  • 31
  • 28
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Ant diversity across an elevational gradient; functional versus taxonomic perspectives in the Soutpansberg Mountains, South Africa

Munyai, Thinandavha Caswell 05 1900 (has links)
PhDENV / Department of Ecology and Resource Management / See the attached abstract below
332

Reward Complementarity and Context Dependency in Multispecies Mutualist Interactions in Partridge Pea (Chamaecrista fasciculata)

Fehling, Laura Sharon 25 May 2022 (has links)
No description available.
333

Morphology, neuroanatomy, brain gene expression, and the evolution of division of labor in the leafcutter ant Atta cephalotes

Muratore, Isabella Benter 02 March 2022 (has links)
What selective forces and molecular mechanisms govern the integration of worker body size and morphology, brain architecture, and behavior in insect societies? Workers of the remarkably polyphenic and socially complex fungus-growing leafcutter ant Atta cephalotes exhibit a striking agricultural division of labor. The number of morphologically distinct and behaviorally differentiated worker groups, adaptive mosaic neural phenotypes, and brain transcriptomes have not been examined and the influences of socioecological challenges on behavioral performance, cognition, and brain evolution are unclear. We quantified worker morphological and behavioral variation to assess the number of worker size classes and characterized their social roles. We discriminated multiple worker size groups using a Gaussian mixture model: mid-sized workers (“medias”) had the most diverse task repertories and serve dominant roles in leaf harvesting, whereas workers of other size classes performed fewer, more specialized behaviors. We used variation among tasks in sensorimotor functions and task performance frequencies to create an estimate of sensory integration and processing demands across worker size groups. This metric predicted that medias require the greatest neural investment due to the high diversity of sensory inputs and motor functions associated with their task set. We quantified the volumes of key neuropils in brains of workers of different sizes and determined their allometries, finding that our estimate corresponded to proportional investment in the mushroom bodies, a brain compartment responsible for learning, memory, and sensory integration, and identifying allometric scaling patterns in other brain centers. Additionally, we measured whole-brain gene expression and identified significant differences in expression levels for numerous genes likely to underpin behavior. Differences were most pronounced between the smallest (fungal gardener “minims”) and largest (defensive “majors”), although not all expression differences were driven by worker size. Overrepresented gene functional categories included those related to sensory processing (enriched in genes upregulated in medias and minims) and metabolism (enriched in genes upregulated in majors). These results identify the nature of selective forces favoring differentiation along morphological, neuroanatomical, behavioral, and molecular axes among A. cephalotes workers and the impact of advanced division of labor on brain evolution. / 2023-03-01T00:00:00Z
334

A Comparison of Antlions, Bees, Darkling Beetles and Velvet Ants Across Sand Dune and Non-Sand Dune Habitats at Ash Meadows National Wildlife Refuge

Boehme, Nicole F. 01 May 2014 (has links)
Insects fulfill important roles within all ecosystems, including deserts, and interact directly and indirectly with the endemic and endangered species at the Ash Meadows National Wildlife Refuge (AMNWR). Here I investigate the variability of species richness, diversity, abundance and community composition of four insect groups between stabilized sand dune habitats, unstabilized sand dune habitats and non-sand dune habitats. The insects examined in this thesis include antlions (Myrmeleontidae), bees (Apiformes), darkling beetles (Tenebrionidae) and velvet ants (Mutillidae). As the impact and interactions of two of the insect groups, antlions and velvet ants, are largely unknown within any ecosystem, this thesis also includes a faunal study of velvet ants at AMNWR and their spatial and temporal variation at the refuge. Generalized linear mixed models were used to identify significant differences in richness, diversity and abundance for each insect group between the stabilized sand dune, unstabilized sand dune and non-sand dune habitats. Species richness differed between habitats for antlions, beetles and velvet ants over the study period. Diversity differed between habitats for antlions and beetles, and abundance differed between habitats for all groups over the study period. Nearly every habitat supported some unique species. The faunal survey of velvet ants revealed minor variation in flight times between species and a unique pattern of temporal niche partitioning in one species. Habitat preferences were observed for seven of 42 velvet ant species at AMNWR. In a comparison of the diversity of velvet ants between AMNWR and the Nevada Test Site (NTS), six velvet ant species that occurred at the NTS were not found at AMNWR. Diagnoses and a key are provided for the velvet ants of AMNWR. This thesis increases the number of known terrestrial invertebrates at the refuge and provides a comparison of terrestrial insect distribution and habitat use at AMNWR. These investigations contribute to the goals and objectives of the U. S. Fish and Wildlife Service to obtain basic inventories and understand the terrestrial habitat use of invertebrates at AMNWR.
335

How ant communities are shaped by vacant land management strategies, landscape context, and a legacy of industrialization

Tyrpak, Alex Marcus January 2020 (has links)
No description available.
336

Fire ant response to management of native grass field buffers

Hale, Sarah Lucinda 07 August 2010 (has links)
Imported fire ants are invasive and cause injury to people, crops, livestock and wildlife. Disturbance may increase abundance and activity of fire ants. However, native grass field buffers established for grassland birds require periodic disturbance. I experimentally tested if fire ant mound density and foraging activity changed after burning and disking in native grass buffers and examined relationships among fire ants, vegetation, and grassland bird and butterfly metrics in undisturbed buffers. In 2008, disking increased mound density and foraging activity, but burning did not. In 2009, disking had no effect, but effects of disking the previous season persisted. Fire ant metrics were not related generally to bird or butterfly metrics. Mound density and foraging activity were related negatively to grass cover and related positively to forbs. Burning had less influence on abundance and activity of fire ants, and may better conserve grassland habitats in areas with fire ants.
337

The taxonomy and population genetics of the Panamanian fungus-growing ant <i>Mycetomoellerius</i> sp. n. (Formicidae: Attini)

Cardenas, Cody Raul January 2020 (has links)
No description available.
338

Interactions Between the Odorous House Ant (Tapinoma sessile) and RNA Viruses: a Multi-Faceted Approach

Hartle, Charly Taryn 28 May 2024 (has links)
The odorous house ant, Tapinoma sessile, is a widespread, common pest in North American residential areas, yet the understanding of how viral pathogens shape its behavior, management, and interactions with other insects remains limited. Over the course of my thesis, I characterized four novel viruses in T. sessile using metatranscriptomic analysis, investigated their infectivity, and explored how colony social organization influences viral infection patterns. Inoculation experiments confirmed active infection in T. sessile colonies, suggesting trophallaxis as a route for horizontal transmission. These viruses were prevalent in urban populations with polygyne, unicolonial traits, indicating a potential association between colony social structure, colony location, and virus presence and diversity. Additionally, common honey bee viruses including Deformed Wing Virus and Kashmir Bee Virus were detected in T. sessile colonies, with higher prevalence near beehives, indicating a route for virus spillover between the species. Furthermore, the impact of viral infection on foraging behavior was assessed, revealing altered activity and diet preferences in infected colonies and highlighting the need for modified control strategies. Finally, I explored virus transmission between T. sessile and associated arthropods and found shared viruses and active replication in arthropods within ant nests, indicating a novel case of virus spillover between ants and myrmecophiles. These findings offer insights into viral pathogen interactions within ant colonies, the influence of social organization on infection dynamics, and the potential for pathogen transmission between ants and associated arthropods and offer a deeper understanding of an important native ant species that may shape future pest management strategies. / Master of Science in Life Sciences / In my thesis research I studied the odorous house ant or sugar ant, a common pest in homes and businesses in North America, to understand how viral pathogens shape its behavior, management, and interactions with other insects. I discovered four new odorous house ant viruses infecting these ants using molecular analysis techniques and found that they can pass from ant to ant when they share food. Interestingly, these viruses were more common in urban ant colonies with multiple queens, suggesting a link between the ants' social structure and the viruses they carry. Additionally, I found viruses typically seen in honey bees in these ant colonies, especially when those colonies were close to beehives, indicating that the odorous house ant can pick up viruses from honey bees. Furthermore, I studied how these viruses affect ant behavior and found that infected ant colonies change their activity and food preferences. Lastly, I investigated if these viruses are able to jump from ants to other insects and found evidence that insects living in their nests shared the same or similar virus infections. These findings provide important insights into how viruses spread among ant colonies and nearby insects, how their social structure affects transmission of viruses, and how viruses can move between different species of insects. Understanding these interactions is crucial for developing better ways to control ant pests and for gaining a deeper understanding of this important native ant species.
339

Alien ant invasion on Christmas Island, Indian Ocean : the role of ant-scale associations in the dynamics of supercolonies of the yellow crazy ant, Anoplolepis gracilipes

Abbott, Kirsten L January 2004 (has links)
Abstract not available
340

Factors determining the spatio-temporal distribution of ants in an Andean tropical forest / Facteurs déterminant la distribution spatio-temporelle des fourmis dans une forêt tropicale andine

Jacquemin, Justine 26 March 2013 (has links)
In tropical forests, ants are numerous, diversified and ecologically important, being present from forest floor to upper canopy and exploiting a wide variety of diets. Nearly half of the ant species are directly in contact with the ground stratum, including the leaf-litter and the underlying soil, for nesting or foraging. The main factors known to influence ant distribution and abundance can be environmental (e.g. heterogeneous distribution of microhabitat size, nutrient availability, microclimate, soil properties) or biotic (e.g. inter- and intraspecific competition, prey availability). Some of these factors, such as leaf-litter volume or prey availability, may also vary seasonally. Also, the Ecuadorian Andes are known as being a hotspot of biodiversity for a large array of organisms, but it was not documented until now if this is also the case for ants.<p><p>The general aim of the PhD project was to identify, by both descriptive and experimental approaches, the factors determining the structure of a ground-dwelling ant assemblage at a small-spatial scale and its temporal variation in an evergreen premontane tropical forest of the Ecuadorian Andes.<p><p>In the descriptive part of the project, we studied both horizontal (along a transect) and vertical (across ground layers) species diversity and distribution of ground-dwelling ants. To attempt to explain the observed patterns, we measured a series of environmental factors varying at small spatial scale and/or seasonally: canopy openness, leaf-litter quantity, slope, and a series of soil physico-chemical properties (e.g. texture). The ant assemblage richness appeared to be at least as high as in the Amazonian Basin, with up to 33 species per m². The heterogeneity of species spatial distribution at small spatial scale was high, with distinct species composition (average Jaccard index = 0.2 ± 0.08 SD) and abundance (up to 40 fold) in contiguous plots. We observed a strong seasonal effect on the ant assemblage structure. The higher ant diversity and abundance found at the surface and in the mineral soil during the dry season suggested a seasonal peak of activity on the ground surface and the seasonal migration of drought-sensitive species downwards in the soil. Ant diversity was related to distinct environmental factors according to the ground layer considered. We found strong correlations between litter amount and dominant ant distribution in the leaf-litter layer, while we found no correlation with any factor in the soil layer. The low amount of negative association between dominant species suggested a low interspecific competition.<p><p>In the experimental part of the project, our aim was to identify experimentally the relative importance of habitat size vs. prey availability in structuring the leaf-litter ant assemblage. We studied the response of various ant trophic groups to an increased nutrient availability which boosted the decomposition of their leaf-litter habitat and enhanced the abundance of their prey. Bottom-up effect on the ant fauna (and other predaceous arthropods) regarding species composition and dominance was also studied. Stable isotope analysis was used to distinguish trophic groups among ants and mesofauna. Ants responded differentially according to their trophic group: despite increased prey availability, predatory species were negatively affected by nutrient supply, while other ant trophic group densities did not change. Our results showed that predatory ants are limited by habitat size rather than by prey availability, and that these ants are more affected by habitat loss than their prey, other ant trophic groups and other macrofauna taxa. Furthermore, a taxonomic shift occurred within each ant trophic group, leading to the replacement of dominant genera in fertilized plots.<p><p>As a conclusion, our results emphasize the importance of distinguishing layers among the ground matrix, since both ant faunas and their response to environmental factors vary vertically and seasonally. The distribution of ground-dwelling ants was only weakly explained by both the environmental factors measured and by biotic interactions, at a small spatial scale. Also, our results emphasize the importance of distinguishing trophic groups among the ant assemblage, since the response of these groups under changing conditions was different. In this regard, stable isotope analysis was a useful tool for investigating the trophic ecology of various leaf-litter taxa, and it was successfully used for the first time to assess the diet of leaf-litter ants and their position in the Brown Food Web relative to other taxa. Also, the isotopic approach allowed us to increase the knowledge about the biology of a rare and cryptic ant species, by revealing its top-predatory position. The outstanding local species richness that we observed confirms that the Ecuadorian Andes are also a biodiversity hotspot for ants. / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished

Page generated in 0.0383 seconds