Spelling suggestions: "subject:"anvil"" "subject:"xanvil""
51 |
Exploration of Earth's Deep Interior by Merging Nanotechnology, Diamond-Anvil Cell Experiments, and Computational Crystal ChemistryPigott, Jeffrey Scott 08 October 2015 (has links)
No description available.
|
52 |
Impact-initiated combustion of aluminumBreidenich, Jennifer L. 07 January 2016 (has links)
This work focuses on understanding the impact-initiated combustion of aluminum powder compacts. Aluminum is typically one of the components of intermetallic-forming structural energetic materials (SEMs), which have the desirable combination of rapid release of thermal energy and high yield strength.
Aluminum powders of various sizes and different levels of mechanical pre-activation are investigated to determine their reactivity under uniaxial stress rod-on-anvil impact conditions, using a 7.62 mm gas gun. The compacts reveal light emission due to combustion upon impact at velocities greater than 170 m/s. Particle size and mechanical pre-activation influence the initiation of aluminum combustion reaction through particle-level processes such as localized friction, strain, and heating, as well as continuum-scale effects controlling the amount of energy required for compaction and deformation of the powder compact during uniaxial stress loading. Compacts composed of larger diameter aluminum particles (~70µm) are more sensitive to impact initiated combustion than those composed of smaller diameter particles. Additionally, mechanical pre-activation by high energy ball milling (HEBM) increases the propensity for reaction initiation.
Direct imaging using high-speed framing and IR cameras reveals light emission and temperature rise during the compaction and deformation processes. Correlations of these images to meso-scale CTH simulations reveal that initiation of combustion reactions in aluminum powder compacts is closely tied to mesoscale processes, such as particle-particle interactions, pore collapse, and particle-level deformation. These particle level processes cannot be measured directly because traditional pressure and velocity sensors provide spatially averaged responses. In order to address this issue, quantum dots (QDs) are investigated as possible meso-scale pressure sensors for probing the shock response of heterogeneous materials directly. Impact experiments were conducted on a QD-polymer film using a laser driven flyer setup at the University of Illinois Urbana-Champaign (UIUC). Time-resolved spectroscopy was used to monitor the energy shift and intensity loss as a function of pressure over nanosecond time scales. Shock compression of a QD-PVA film results in an upward shift in energy (or a blueshift in the emission spectra) and a decrease in emission intensity. The magnitude of the shift in energy and the drop in intensity are a function of the shock pressure and can be used to track the particle scale differences in the shock pressure. The encouraging results illustrate the possible use of quantum dots as mesoscale diagnostics to probe the mechanisms involved in the impact initiation of combustion or intermetallic reactions.
|
53 |
Studies of crystalline organic molecular materials under extreme conditionsBiggs, Timothy James January 2006 (has links)
This thesis describes investigations into the properties of -phase BEDT-TTF charge transfer salts. Charge transfer salts are mainly studied as they are very useful test beds for fundamental physics due to the tuneability of their proper- ties and ground states. The effects of temperature and pressure on such systems have been studied, as these allow access to a wide range of different states and properties. Transport properties of these systems have been studied to obtain information about the Fermi surface and effective mass, and the effect of deuter- ation and also change of pressure media will be discussed. The interaction of infrared radiation with these systems has also been investigated and simultaneous pressure and temperature measurements will be presented, something not greatly studied due to the large technical challenges. The techniques and approaches for overcoming these are also discussed. Chapter 1 provides an introduction to the organic materials themselves with particular emphasis on the actual compounds studied. Chapter 2 provides the necessary theoretical background for studying organic charge transfer salts using magnetic quantum oscillations and their infrared re- ectivity. Chapter 3 covers the experimental techniques and also discusses some of the challenges encountered and their solutions to aid others working in this area. Chapter 4 describes an investigation into the transport properties of - (ET)2Cu(SCN)2 by studying Shubnikov-de Haas oscillations using both deuter- ated and normal samples and using two different pressure media, and comparing it to work done using a third. Chapter 5 presents an investigation into the pressure dependence of selected phonon modes in -(ET)2Cu(SCN)2 using infrared radiation on a deuterated sam- ple. Chapter 6 presents what is believed to be the first pressure and temperature dependent infrared study of an organic molecular material. In this case the or- ganic molecular material is d8--(ET)2Cu[N(CN)2]Br, but the techniques should be readily transferable to other materials.
|
54 |
Spectroscopie Raman résonnante UV in situ à haute température ou à haute pression / In situ UV resonant Raman spectroscopy at high temperature and at high pressureMontagnac, Gilles 12 December 2012 (has links)
Dans cette thèse, la spectroscopie Raman résonante UV (SRRUV) est appliquée pour la première fois à l'étude ‘in situ’ de matériaux carbonés à très haute température (> 2000 K) ou à haute pression (< 1 GPa).La thèse est constituée de trois parties. La première aborde notre travail de caractérisation en SRRUV (1) de films semi conducteurs de diamants ultra-nano-cristalins, (2) des kérogènes issues de météorites chondritiques et de charbons, et (3) des tholins, échantillons de carbone-hydrogène-azote, synthétisés comme analogues de l'atmosphère de Titan.L’intérêt pour ces phases du carbone en planétologie et en science des matériaux nous a poussé à mettre en œuvre leur étude ‘in situ’ en SRRUV. La seconde partie de la thèse est consacrée au développement d'une platine chauffante, grâce à laquelle les spectres Raman du graphite sous sa forme pyrolitique et HOPG ont été mesurés jusqu'à 2700 K. Ces données valident les modèles anharmoniques théoriques d’interaction électron-phonon et phonon-phonon. Le spectre Raman du graphite a été étalonné en fonction de la température et devient un « thermomètre » à très haute température.Dans la troisième partie de cette thèse, une presse à enclumes opposées a été modifiée pour suivre en SRRUV les changements structuraux de cristaux moléculaires très luminescents. Les vibrations intramoléculaires du cristal de pérylène sont étudiées sous pression par SRRUV. Ce composé est un cristal formé de molécules organiques polyaromatiques, avec des propriétés de semi-conducteur. Les effets de la pression sur certains modes de vibrations sont non linéaires et mettent en évidence des changement structuraux et de planéité de la molécule. / I applied UV resonant Raman spectroscopy (UVRRS) to an ‘in situ’ study of carbon materials at very hight temperature (> 2000 K) or at high pressure (< 1 GPa).The advantages of UVRRS are presented in the first part of this PHD thesis, and used to investigate details of the composition and structure of disordered carbon materials such as: (1) n-type nanocrystalline films, (2) carbonaceous matter in chondrites and (3) tholins, HCN synthetic samples of Titan 's atmosphere.‘In situ’ Raman studies are limited to 2000 K by the visible black-body emission. I designed a high temperature cell to perform UVRRS above this limit. The second part of the manuscript presents Raman spectra of pyrolitic graphite and HOPG up to 2700 K. This data are consistent with anharmonic models up to 900 K, and show the coupling effects of electron-phonon and phonon-phonon. The last one dominates the anharmonicity above 1000 K. The Raman spectra was calibrated as a function of temperature and became a “thermometer” up to 2700 K.For high pressure measurements in the third part, I modified an anvil cell to study by UVRRS, the vibrational changes induced by pressure on very luminescent molecular organic crystals. I present an analysis at 244 nm of resonant Raman modes of perylene crystal under hydrostatic pressure up to 0.8 GPa. Some of them have a non linear feature under pressure, revealing structural and planar modifications of the molecules.
|
55 |
Comportement des terres rares (REE) et des éléments fortement chargés (HSFE) pendant la différenciation précoce de la Terre sous faible fugacité d'oxygène / Rare earth elements (REE) and high field strength elements (HFSE) behavior during early Earth differentiation under low oxygen fugacityCartier, Camille 11 December 2014 (has links)
La Terre contient une quantité significative d’eau et son manteau est très oxydé par rapport aux conditions canoniques de la nébuleuse solaire, ce qui est contradictoire avec l’existence de son noyau métallique et sa position dans le Système solaire. Ceci implique que l’état rédox de la Terre ait augmenté au début de son histoire. Aujourd’hui, de nombreuses études suggèrent que cette évolution se soit faite à travers une accrétion hétérogène. Ainsi les premières briques élémentaires de notre planète seraient constituées de matériel très réduit et une grande partie de la différenciation précoce (extraction du noyau et différenciation silicatée) se seraient donc déroulées en conditions très réductrices (entre IW-5.5 et IW-2). L’objectif de cette thèse est de mesurer l’impact de ces conditions sur le comportement des terres rares (REE) et des éléments fortement chargés (HSFE), et de modéliser leur répartition dans les différents réservoirs lors de la différenciation précoce de la Terre. Nous réalisons une soixantaine d’expériences de fusion – cristallisation à l’équilibre de matériel chondritique à basse (5 GPa) et haute (26 GPa) pression, dans une gamme de conditions rédox allant de IW (tampon fer – wüstite) à IW-8. Afin de caractériser le paramètre fO 2 dans ces conditions extrêmes, nous développons un formalisme thermodynamique adapté, basé sur l’équilibre Si-SiO 2 . En analysant les différentes phases à l’équilibre dans les différents échantillons, nous calculons et établissons la première banque de données de partage cristal (enstatite, bridgmanite = pérovskite silicatée, majorite) – liquide silicaté, métal-silicate et sulfure-silicate pour les HFSE et les REE en conditions très réductrices. Grâce aux données enstatite – liquide nous développons un proxy de la fO 2 , basé sur le rapport D(Cr)/D(V) et grâce auquel nous mesurons la fO 2 de chondres de type I comme étant similaires aux conditions canoniques de la nébuleuse (IW-7). Nos données de partage métal – silicate prouvent que l’extraction du noyau terrestre n’est pas à l’origine d’un fractionnement des terres rares. Au contraire, en mesurant pour la première fois le spectre XANES du Nb 2+ et du Ta 3+ dans des verres silicatés à des teneurs de l’ordre du ppm, nous prouvons que le comportement de Nb et Ta est contrôlé par la fO 2 . En intégrant nos données de partage à un modèle d’accrétion hétérogène nous montrons que la signature sous-chondritique en Nb/Ta de la Terre silicatée peut être le résultat de l’accrétion d’un matériel chondritique évoluant avec le temps combinée à l’extraction du noyau en conditions réductrices, ce qui réfute l’hypothèse d’une Terre se formant à partir d’un matériel oxydé. Nos expériences de haute pression montrent que le partage des REE et des HFSE dans la majorite et la bridgmanite est très sensible à la fO 2. De plus, le processus de dismutation du fer, invoqué pour expliquer l’augmentation de la fO 2 du manteau lors de la cristallisation de l’océan magmatique, ne semble pas être un mécanisme efficace en-dessous de IW. Enfin, nos données montrent que Ti, V, Cr, Mn, Nb et Ta sont chalcophiles en conditions très réductrices. L’extraction précoce d’un liquide sulfuré dans ces conditions a donc pu modifier les rapports élémentaires supposés chondritiques dans la Terre silicatée. L’extraction d’une importante quantité de FeS pourrait aussi être à l’origine d’un découplage Zr/Hf. / The Earth contains significant amounts of water and its mantle is highly oxidized compared to the solar nebula canonical conditions, which is inconsistent with the existence of its metallic core and its location in the Solar System. This implies the redox state of the Earth has increased during its early history as suggested in heterogeneous accretion models. Thus, the first building blocks of our planet would have been made of highly reduced material, and the early Earth’s differentiation (core extraction and silicate differentiation) would have taken place under highly reducing conditions (between IW-5.5 and IW-2). The aim of this thesis is to measure the impact of these conditions on rare earth elements (REE) and high field strength elements (HFSE) behavior, and model their distribution into the main reservoirs formed early in Earth’s history. We run about sixteen melting – crystallization experiments, starting from chondritic material and equilibrating it at low (5 GPa) and high (26 GPa) pressure, spanning a redox range going from IW (iron – wüstite buffer) to IW-8. In order to characterize the fO 2 parameter in these extreme conditions, we develop an adapted thermodynamic formalism, based on Si-SiO 2 equilibrium. Analyzing the various equilibrated phases within our experimental samples, we calculate and propose the first crystal (enstatite, bridgmanite = Mg-perovskite, majorite) – silicate liquid, metal – silicate, sulfide – silicate partition coefficients database for HFSE and REE under highly reducing conditions. Using our enstatite-liquid data we develop a fO 2 proxy based on D(Cr)/D(V) ratio and we measure type I chondrule fO 2 as being similar to canonical nebular conditions (IW-7). Our metal-silicate partitioning data prove that Earth core extraction is not responsible for REE fractionation. On the contrary, recording for the first time Nb 2+ and Ta 3+ XANES spectra in silicate glasses and at ppm level concentrations, we prove that Nb and Ta behavior is mainly controlled by fO 2 . Using our partitioning data in a heterogeneous accretion model, we show that sub-chondritic Nb/Ta signature of the silicate Earth (14 ± 0.3) can be the result of the accretion of chondritic material changing with time, combined with the progressive extraction of the core in reducing conditions. This refutes the hypothesis of an oxidized material building the Earth. Our high-pressure experiments show that REE and HFSE partitioning in majorite and bridgmanite is very sensitive to fO 2 . Moreover, iron dismutation process, invoked to explain mantle fO 2 increase during magma ocean crystallization, does not seem to be an efficient mechanism below IW. Finally, our data show that Ti, V, Cr, Mn, Nb and Ta are chalcophiles under highly reducing conditions. Consequently, early extraction of a sulfide melt at an early and reduced stage could have modified chondritic elementary ratios in the silicate Earth. Extraction of a substantial amount of FeS may also cause a Zr/Hf decoupling.
|
Page generated in 0.042 seconds