• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 7
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Control of aperiodic walking and the energetic effects of parallel joint compliance of planar bipedal robots

Yang, Tao 10 December 2007 (has links)
No description available.
12

Optimization of Aperiodically Spaced Antenna Arrays for Wideband Applications

Baggett, Benjamin Matthew Wall 06 June 2011 (has links)
Over the years, phased array antennas have provided electronic scanning with high gain and low sidelobe levels for many radar and satellite applications. The need for higher bandwidth as well as greater scanning ability has led to research in the area of aperiodically spaced antenna arrays. Aperiodic arrays use variable spacing between antenna elements and generally require fewer elements than periodically spaced arrays to achieve similar far field pattern performance. This reduction in elements allows the array to be built at much lower cost than traditional phased arrays. This thesis introduces the concept of aperiodic phased arrays and their design via optimization algorithms, specifically Particle Swarm Optimization. An axial mode helix is designed as the antenna array element to obtain the required half power beamwidth and bandwidth. The final optimized aperiodic array is compared to a traditional periodic array and conclusions are made. / Master of Science
13

Complexité des pavages apériodiques : calculs et interprétations / Complexity of aperiodic tilings : computations and interpretations

Julien, Antoine 10 December 2009 (has links)
La théorie des pavages apériodiques a connu des développements rapides depuis les années 1980, avec la découvertes d'alliages métalliques cristallisant dans une structure quasi-périodique.Dans cette thèse, on étudie particulièrement deux méthodes de construction de pavages : par coupe et projection, et par substitution. Deux angles d'approche sont développés : l'étude de la fonction de complexité, et l'étude métrique de l'espace de pavages.Dans une première partie, on calcule l'asymptotique de la fonction de complexité pour des pavages coupe et projection, généralisant ainsi des résultats connus en dynamiques symbolique pour la dimension 1. On montre que pour un pavage coupe et projection canonique N sur d sans période, la complexité croît (à des constantes près) comme n à la puissance a, où a est un entier compris entre d et N-d.Ensuite, on se base sur une construction de Pearson et Bellissard qui construisent un triplet spectral sur les ensembles de Cantor ultramétriques. On suit leur construction dans le cas d'ensembles de Cantor auto-similaires. Elle s'applique en particulier aux transversales d'espaces de pavages de substitution.Enfin, on fait le lien entre la distance usuelle sur l'enveloppe d'un pavage et la complexité de ce pavage. Les liens entre complexité et métrique permettent de donner une preuve directe du fait suivant : la complexité des pavages de substitution apériodiques de dimension d croît comme n à la puissance d.La question de liens entre la complexité et la topologie (et pas seulement avec la distance) reste ouverte. Nous apportons cependant des réponses partielles dans cette direction. / Since the 1980s, the theory of aperiodic tilings developed quickly, motivated by the discovery of metallic alloys which crystallize in an aperiodic structure. This highlighted the need for new models of crystals.Two models of aperiodic tilings are specifically studied in this dissertation. First, the cut-and-project method, then the inflation and substitution method. Two point of view are developed for the study of these objects: the study of the complexity function associated to a tiling, and the metric study of the associated tiling space.In a first part, the asymptotic behaviour of the complexity function for cut-and-project tilings is studied. The results stated here generalize formerly known results in the specific case of dimension 1. It is proved that for an (N,d) canonical projection tiling without periods, the complexity grows like n to the a, with a an integer greater or equal to d but lesser or equal to N-d.A second part is based on a construction by Pearson and Bellissard of a spectral triple for ultrametric Cantor sets. Their construction is applied to self-similar Cantor sets. It applies in particular to the transversal of substitution tiling spaces.In a last part, the links between the complexity function of a tiling and the usual distance on its associated tiling space are made explicit. These links can provide a direct and complete proof of the following fact: the complexity of an aperiodic d-dimensional substitution tiling grows asymptotically as n to the d, up to constants. These links between complexity and distance raises the question of links between complexity and topology. Partial answers are given in this direction.
14

Engineered quasi-phase matching for nonlinear quantum optics in waveguides

Van Camp, Mackenzie Anne 02 November 2017 (has links)
Entanglement is the hallmark of quantum mechanics. Quantum entanglement -- putting two or more identical particles into a non-factorable state -- has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development. Quantum frequency conversion from 1848nm to 843nm is demonstrated for the first time, with >75% single-photon conversion efficiency. A new electric field poling methodology is presented, combining elements from multiple historical techniques with a new fast-feedback control system. This poling technique is used to fabricate the first chirped-and-apodized Type-II quasi-phase-matched structures in titanium-diffused lithium niobate waveguides, culminating in a measured phasematching spectrum that is predominantly Gaussian (R^2 = 0.80), nearly eight times broader than the unchirped spectrum, and agrees well with simulations.
15

A Study Of Aperiodic (Random) Arrays of Various Geometries

Buchanan, Kristopher Ryan 2011 May 1900 (has links)
The use of wireless communication techniques and network centric topologies for portable communication networks and platforms makes it important to investigate new distributed beamforming techniques. Platforms such as micro air vehicles (MAVs), unattended ground sensors (UGSs), and unpiloted aerial vehicles (UAVs) can all benefit from advances in this area by enabling advantages in stealth, enhanced survivability, and maximum maneuverability. Collaborative beamforming is an example of a new technique to utilize these systems which uses a randomly distributed antenna array with a fitting phase coefficient for the elements. In this example, the radiated signal power of each element is coherently added in the far-field region of a specified target direction with net destructive interference occurring in all other regions to suppress sidelobe behavior. A wide variety of topologies can be used to confine geometrically these mobile random arrays for analysis. The distribution function for these topologies must be able to generalize the randomness within the geometry. Gaussian and Uniform distributions are investigated in this analysis, since they provide a way to calculate the statistically averaged beampattern for linear, planar (square and circular), and volumetric (cubical, cylindrical, and spherical) geometries. They are also of practical interest since the impact of array topology on the beampattern can typically be described in closed form. A rigorous analysis is presented first for disc-shaped topologies to motivate the discussion on random array properties and provide several new insights into their behavior. The analyses of volumetric geometries which are of interest to this work are drawn from this planar topology to provide a tractable and coherent discussion on the properties of more complex geometries. This analysis considers Normal and Gaussian distributed array element populations to derive the average beampattern, sidelobe behavior, beamwidth, and directivity. The beampattern is also examined in a similar manor for circular and spherical arrays with a truncated Gaussian distribution. A summary of the random array analysis and its results concludes this thesis.
16

A study of persistence in international stock price indices: With R/S analysis method

Ke, Su-Chin 16 May 2007 (has links)
The traditional efficiency market hypothesis supposes that the fluctuations of the stock prices are random, and stock price is unable to be predicted. But in recent years papers point out that the fluctuations of the stock prices are not totally random, the fluctuations of the stock price have long term memory characteristics. Therefore, trying to find out the regularity of the market price becomes a new subject for research. This paper attempts to use the fractional market hypothesis to analyze stock market, which divided samples into two types which are the developed markets ¡]Japan , U.S.A. , Australia, and South Africa¡^and mergering markets ¡]Korea , Taiwan , China¡]Shanghai¡^ , and Jordan¡^. The sample period is from January of 1997 to December of 2006. And using the regarding countries¡¦ main returns of daily stock price index. By using R/S analysis to estimate each country¡¦ Hurst coefficients, this paper studies the aperiodic cycle in each country. It also wants to see whether the degree of maturity affects the different result or not. The empirical results show that the stock indeies in the developed markets have shorter aperiodic cycle than in the mergering markets. U.S.A., Australia ,and South African markets the aperiodic cycles are 138 days , 126 days ,and 152 days respectively. Taiwan and Shanghai markets the aperiodic cycles are 208 days and 202 days respectively. Japan, Korea , Jordanian markets in this sample period have not found aperiodic cycles.
17

Experimental Investigation of Effect of Viscosity on Aperiodic Bubbling from Submerged Capillary-Tube Orifices in Adiabatic Liquid Pools

Deora, Aakash 28 October 2019 (has links)
No description available.
18

Enriching Enea OSE for Better Predictability Support

Ul Mustafa, Naveed January 2011 (has links)
A real-time application is designed as a set of tasks with specific timing attributes and constraints. These tasks can be categorized as periodic, sporadic or aperiodic, based on the timing attributes that are specified for them which in turn define their runtime behaviors. To ensure correct execution and behavior of the task set at runtime, the scheduler of the underlying operating system should take into account the type of each task (i.e.,  periodic, sporadic, aperiodic). This is important so that the scheduler can schedule the task set in a predictable way and be able to allocate CPU time to each task appropriately in order for them to achieve their timing constraints. ENEA OSE is a real-time operating system with fixed priority preemptive scheduling policy which is used heavily in embedded systems, such as telecommunication systems developed by Ericsson. While OSE allows for specification of priority levels for tasks and schedules them accordingly, it can not distinguish between different types of tasks. This thesis work investigates mechanisms to build a scheduler on top of OSE, which can identify three types of real-time tasks and schedule them in a more predictable way. The scheduler can also monitor behavior of task set at run-time and invoke violation handlers if time constraints of a task are violated. The scheduler is implemented on OSE5.5 soft kernel. It identifies periodic, aperiodic and sporadic tasks. Sporadic and aperiodic tasks can be interrupt driven or program driven. The scheduler implements EDF and RMS as scheduling policy of periodic tasks. Sporadic and aperiodic tasks can be scheduled using polling server or background scheme. Schedules generated by the scheduler  deviate from expected timing behavior due to scheduling overhead. Approaches to reduce deviation are suggested as future extension of thesis work. Usability of the scheduler can be increased by extending the scheduler to support other scheduling algorithm in addition to RMS and EDF. / CHESS
19

Harmony from Chaos? Investigations in Aperiodic Visual-Motor and Interpersonal Coordination

Washburn, Auriel 17 October 2014 (has links)
No description available.
20

Comportamento crítico do processo de contato aperiódico: simulações e grupo de renormalização / Critical behavior of the aperiodic contact process: simulation and renormalization-group

Faria, Maicon Saul 11 June 2010 (has links)
Utilizamos um formalismo de operadores e a técnica de grupo de renormalizacao de Dasgupta, Ma e Hu para analisar o efeito de distribuições inomogêneas dos parâmetros sobre o comportamento crítico de um modelo estocástico simples. O processo de contato em uma dimensão constitui talvez o modelo mais simples que apresenta uma transição de fase para um estado absorvente. Nós usamos as seqüências de Fibonacci, duplicação de período e triplicação de período para introduzir inomogeneidades aperiódicas no processo de contato unidimensional e em uma cadeia quântica de spin. Usando procedimento de grupo de renormalização de desordem forte, estabelecemos algumas relações entre propriedades dos operadores renormalizados e grandezas termodinâmicas ou médias. Fomos capazes de testar o critério de relevância de flutuações geométricas de Harris-Luck, de obter vários expoentes críticos, e de observar aspectos característicos de dinâmica lenta e oscilações log-periódicas. A sequência de triplicação de período nos leva aos expoentes = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) e k = ln 2/ ln (3/2). Usamos técnicas de Monte Carlo para confirmar os resultados de grupo de renormalização. As simulações numéricas indicam a validade do critério de relevância de Harris-Luck, e corroboram o caráter universal do comportamento crítico desses sistemas aperiódicos. / We use an operator formalism and the renormalization-group technique of Dasgupta, Ma and Hu to analyze the effects of a nonhomogeneous distribution of parameters on the critical behavior of simple stochastic model system. The contact process in one dimension is perhaps the simplest model to display a phase transition to an absorbing stationary state. We use the Fibonacci, period-doubling and period-tripling sequences for introducing aperiodic inhomogeneities in the one dimensional contact process and in a quantum Ising chain. Using strong-disorder renormalization-group procedures, we establish some relations between properties of renormalized operator and of thermodynamic or mean quantities. We were able to test a well-known criterion of relevance of geometric fluctuations, to obtain a number of critical exponents, and to point out features of slow-dynamics and log-periodic oscillations. The period-tripling sequence leads to the critical exponents = ln (7/9)/ ln (4/9), = ln (9/7)/ ln 4, = ln 3/ ln (3/2) and k = ln 2/ ln (3/2). We then used Monte Carlo techniques to check renormalization-group results. The numerical simulations indicate the validity of the Harris-Luck criterion of relevance of the geometric fluctuations, and generally support the universal character of the critical behavior of these aperiodic systems.

Page generated in 0.0409 seconds