• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of microwave holography to the assessment of antennas and antenna arrays

Zhang, Tieren, University of Western Sydney, College of Science, Technology and Environment, School of Engineering and Industrial Design January 2001 (has links)
Gabor's original holography, which is the basic theory of modern microwave holographic techniques, is introduced. By computer simulations, it is demonstrated that the conventional holographic approach can be used as a tool to reconstruct aperture field distributions of an antenna with some constraints. Computer simulations of the theory and technique of the improved microwave holographic approach originally introduced by Rahmat-Samii et al. are carried out. The results show that it can be used for surface distortion diagnosis of large reflector antennas. The physical optics integral formulation is derived by general solutions of the vector wave equations. The necessary theory , which is needed to reconstruct the aperture field from near-field measurements both in a rectangular coordinate system and in a cylindrical coordinate system is developed. It is based on the plane wave spectrum and the vector wave modal expansion of an electromagnetic field. By using a simple dipole and other well-defined antennas, computer simulations have been performed. The results show that the technique is rigorous and applicable. It is also demonstrated that the sampling intervals and the number of sampling points should be chosen carefully in order to obtain a satisfactory resolution of the reconstructed aperture field. Furthermore, the simulations carried out in this work reveal that the real aperture field distribution of a dipole antenna has a maximum point at each end of the antenna. This characteristic can only be obtained at a very close distance to the antenna. This study also reveals the significant contributions of the evanescent waves to the aperture reconstruction. A simple but effective method for examining the evanescent waves from the measured near-field is also presented. By using dipoles and other well known antennas and antenna arrays, the experiments were carried out. The experimental results provide reasonable good agreements with the simulations. The technique proposed is effective and accurate. / Doctor of Philosophy (PhD)
2

Channel modeling of an antenna plasma-plume system

Zuniga Barahona, Christian David 28 August 2008 (has links)
Not available / text
3

Applications of microwave holography to the assessment of antennas and antenna arrays

Zhang, Tieren. January 2001 (has links)
Thesis (Ph.D.) -- University of Western Sydney, 2001. / "Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
4

Channel modeling of an antenna plasma-plume system

Zuniga Barahona, Christian David. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
5

Numerical Reconstruction and Applications of Acoustic and Electromagnetic Ultra-Wideband Localized Pulses Generated by Dynamic Aperture Antennas

Abdel-Rahman, Mohamed A. 30 January 1998 (has links)
A study is undertaken of the numerical reconstruction of acoustic and electromagnetic (EM) localized waves (LWs). The latter are carrier-free ultra-wideband pulses characterized by large focusing depths and extended ranges of localization. Special emphasis is placed on finite energy LWs that can be generated by dynamic aperture antennas with independently addressable elements. The reconstruction techniques are based on Huygens and Rayleigh-Sommerfeld integral I and II representations, both in the time and frequency domains. In contradistinction to the Weyl representation,they lend themselves to the physical realization of space-time aperture sources capable of generating localized wave solutions propagating away from the aperture plane. A detailed comparison of the three reconstruction techniques has been carried out in connection with LW solutions to the scalar wave equation, especially with respect to their handling of acausal components incorporated in the aperture excitation fields. In addition, a study is presented of the characteristic properties of LWs propagating through dispersive media modeled by the Klein-Gordon equation. It is demonstrated that contrary to expectation, the depletion of the spectral components of the LW Klein-Gordon field may be slower than that associated with the free space scalar field. Previous work by Power et al. [73] is extended by studying the acoustic bistatic scattering of a modified power spectrum (MPS) pulse from rigid and compressible spheres. The analysis allows the extraction of the radius of a sphere from the backscattered data. Finally, a special class of electromagnetic (EM) LWs, referred to as azimuthally polarized X waves (APXWs), is derived and their reconstruction is addressed, both in the time and frequency domains. / Ph. D.
6

Engineering the near field of radiating systems at millimeter waves : from theory to applications / Manipulation du champ proche des systèmes rayonnants en ondes millimétriques : théorie et applications

Iliopoulos, Ioannis 20 December 2017 (has links)
L'objectif général est de développer un nouvel outil numérique dédié à la focalisation en 3D de l'énergie en zone de champ très proche par un système antennaire. Cet outil permettra de définir la distribution spatiale complexe des champs dans l'ouverture rayonnante afin de focaliser l'énergie sur un volume quelconque en zone de champ réactif. L'hybridation de cet outil avec un code de calcul dédié à l'analyse rapide d‘antennes SIW par la méthode des moments permettra de synthétiser une antenne SIW ad-hoc. Les structures antennaires sélectionnées seront planaires comme par exemple les antennes RLSA (Radial Line Slot Array). Les dimensions de l'antenne (positions, dimensions et nombre de fentes) seront définies à l'aide des outils décrits ci-dessus. Les résultats numériques ainsi obtenus seront validés d'abord numériquement par analyse électromagnétique globale à l'aide de simulateurs commerciaux, puis expérimentalement en ondes millimétriques (mesure en zone de champ très proche). Pour atteindre ces objectifs, nous avons défini quatre tâches principales : Développement d'un outil de synthèse de champ dans l'ouverture rayonnante (formulation théorique couplée à une méthode dite des projections alternées) ; développement d'un outil de calcul rapide (sur la base de traitements par FFT) du champ électromagnétique rayonné en zone de champ proche par une ouverture rayonnante, et retro-propagation ; hybridation de ces algorithmes avec un code de calcul (méthode des moments) en cours de développement à l'IETR et dédié à l'analyse très rapide d'antennes en technologie SIW ; conception d'une preuve ou plusieurs preuves de concept, et validations numérique et expérimentale des concepts proposés. / With the demand for near-field antennas continuously growing, the antenna engineer is charged with the development of new concepts and design procedures for this regime. From the microwave and up to terahertz frequencies, a vast number of applications, especially in the biomedical domain, are in need for focused or shaped fields in the antenna proximity. This work proposes new theoretical methods for near-field shaping based on different optimization schemes. Continuous radiating planar apertures are optimized to radiate a near field with required characteristics. In particular, a versatile optimization technique based on the alternating projection scheme is proposed. It is demonstrated that, based on this scheme, it is feasible to achieve 3-D control of focal spots generated by planar apertures. Additionally, with the same setup, also the vectorial problem (shaping the norm of the field) is addressed. Convex optimization is additionally introduced for near-field shaping of continuous aperture sources. The capabilities of this scheme are demonstrated in the context of different shaping scenarios. Additionally, the discussion is extended to shaping the field in lossy stratified media, based on a spectral Green's functions approach. Besides, the biomedical applications of wireless power transfer to implants and breast cancer imaging are addressed. For the latter, an extensive study is included here, which delivers an outstanding improvement on the penetration depth at higher frequencies. The thesis is completed by several prototypes used for validation. Four different antennas have been designed, based either on the radial line slot array topology or on metasurfaces. The prototypes have been manufactured and measured, validating the overall approach of the thesis.

Page generated in 0.0883 seconds