Spelling suggestions: "subject:"apoptosis resistance"" "subject:"poptosis resistance""
1 |
Antiapoptotic Proteins in Human Macrophage Survival, Differentiation, Innate Immunity and Protection from HIV-induced ApoptosisBusca, Aurelia 02 April 2013 (has links)
Macrophages represent long lived immune cells that are remarkably resistant to apoptosis, which allows them to perform in highly stressful environments. Apoptosis resistance is a characteristic that develops during the differentiation process from monocytes to macrophages. However, the signaling pathways that mediate the development of macrophage antiapoptotic phenotype during differentiation remain mostly unknown. Because of their decreased susceptibility to cell death, macrophages are also key viral reservoirs during HIV infection. My research aims to understand the molecular mechanisms and signaling pathways that mediate cell survival during and after monocyte to macrophage differentiation and the involvement of the main families of antiapoptotic proteins, IAPs (inhibitors of apoptosis) and Bcl2 in this process. HIV accessory protein Vpr was used as an apoptotic stimulus, due to its death inducing abilities in other cell types.
My results show that survival of macrophages is distinctively regulated during and after differentiation. I have identified a signaling pathway consisting of PI3K/Akt activation of NFκB that is important in survival of differentiating macrophages by specifically sustaining antiapoptotic Bcl-xL expression. However, once differentiated, Mcl-1, but not Bcl-xL is dependent on PI3K/Akt activation. Moreover, differentiated macrophages are resistant to the effect of HIV-Vpr, which is highly apoptotic for monocytes. In contrast, resistance to HIV-Vpr induced apoptosis of human macrophages is specifically mediated by antiapoptotic IAP proteins, with no involvement of the Bcl2 family, which maintains macrophage viability in the absence of any apoptotic stimuli.
In addition to their antiapoptotic properties, IAPs are also important regulators of macrophage function. By using chemical compounds (SMAC mimetics) that target IAPs for degradation, I have shown that IAPs positively modulate LPS-induced IL10, IL-27 and MIG (monokine induced by IFNγ) production in human macrophages, by promoting TRAF2, JNK and p38 signaling and NFκB activation. In addition, IAPs also contribute to LPS-induction of CD80/CD86 costimulatory molecules.
Overall, my results suggest that both IAPs and Bcl2 families contribute to survival of human macrophages and that IAPs are also involved in innate immune responses. Unraveling the mechanisms that control macrophage survival and function in various settings would provide therapeutic strategies aimed at eliminating cells when their survival is no longer beneficial for the host, as in the case of HIV infection or autoimmune diseases.
|
2 |
Antiapoptotic Proteins in Human Macrophage Survival, Differentiation, Innate Immunity and Protection from HIV-induced ApoptosisBusca, Aurelia 02 April 2013 (has links)
Macrophages represent long lived immune cells that are remarkably resistant to apoptosis, which allows them to perform in highly stressful environments. Apoptosis resistance is a characteristic that develops during the differentiation process from monocytes to macrophages. However, the signaling pathways that mediate the development of macrophage antiapoptotic phenotype during differentiation remain mostly unknown. Because of their decreased susceptibility to cell death, macrophages are also key viral reservoirs during HIV infection. My research aims to understand the molecular mechanisms and signaling pathways that mediate cell survival during and after monocyte to macrophage differentiation and the involvement of the main families of antiapoptotic proteins, IAPs (inhibitors of apoptosis) and Bcl2 in this process. HIV accessory protein Vpr was used as an apoptotic stimulus, due to its death inducing abilities in other cell types.
My results show that survival of macrophages is distinctively regulated during and after differentiation. I have identified a signaling pathway consisting of PI3K/Akt activation of NFκB that is important in survival of differentiating macrophages by specifically sustaining antiapoptotic Bcl-xL expression. However, once differentiated, Mcl-1, but not Bcl-xL is dependent on PI3K/Akt activation. Moreover, differentiated macrophages are resistant to the effect of HIV-Vpr, which is highly apoptotic for monocytes. In contrast, resistance to HIV-Vpr induced apoptosis of human macrophages is specifically mediated by antiapoptotic IAP proteins, with no involvement of the Bcl2 family, which maintains macrophage viability in the absence of any apoptotic stimuli.
In addition to their antiapoptotic properties, IAPs are also important regulators of macrophage function. By using chemical compounds (SMAC mimetics) that target IAPs for degradation, I have shown that IAPs positively modulate LPS-induced IL10, IL-27 and MIG (monokine induced by IFNγ) production in human macrophages, by promoting TRAF2, JNK and p38 signaling and NFκB activation. In addition, IAPs also contribute to LPS-induction of CD80/CD86 costimulatory molecules.
Overall, my results suggest that both IAPs and Bcl2 families contribute to survival of human macrophages and that IAPs are also involved in innate immune responses. Unraveling the mechanisms that control macrophage survival and function in various settings would provide therapeutic strategies aimed at eliminating cells when their survival is no longer beneficial for the host, as in the case of HIV infection or autoimmune diseases.
|
3 |
Antiapoptotic Proteins in Human Macrophage Survival, Differentiation, Innate Immunity and Protection from HIV-induced ApoptosisBusca, Aurelia January 2013 (has links)
Macrophages represent long lived immune cells that are remarkably resistant to apoptosis, which allows them to perform in highly stressful environments. Apoptosis resistance is a characteristic that develops during the differentiation process from monocytes to macrophages. However, the signaling pathways that mediate the development of macrophage antiapoptotic phenotype during differentiation remain mostly unknown. Because of their decreased susceptibility to cell death, macrophages are also key viral reservoirs during HIV infection. My research aims to understand the molecular mechanisms and signaling pathways that mediate cell survival during and after monocyte to macrophage differentiation and the involvement of the main families of antiapoptotic proteins, IAPs (inhibitors of apoptosis) and Bcl2 in this process. HIV accessory protein Vpr was used as an apoptotic stimulus, due to its death inducing abilities in other cell types.
My results show that survival of macrophages is distinctively regulated during and after differentiation. I have identified a signaling pathway consisting of PI3K/Akt activation of NFκB that is important in survival of differentiating macrophages by specifically sustaining antiapoptotic Bcl-xL expression. However, once differentiated, Mcl-1, but not Bcl-xL is dependent on PI3K/Akt activation. Moreover, differentiated macrophages are resistant to the effect of HIV-Vpr, which is highly apoptotic for monocytes. In contrast, resistance to HIV-Vpr induced apoptosis of human macrophages is specifically mediated by antiapoptotic IAP proteins, with no involvement of the Bcl2 family, which maintains macrophage viability in the absence of any apoptotic stimuli.
In addition to their antiapoptotic properties, IAPs are also important regulators of macrophage function. By using chemical compounds (SMAC mimetics) that target IAPs for degradation, I have shown that IAPs positively modulate LPS-induced IL10, IL-27 and MIG (monokine induced by IFNγ) production in human macrophages, by promoting TRAF2, JNK and p38 signaling and NFκB activation. In addition, IAPs also contribute to LPS-induction of CD80/CD86 costimulatory molecules.
Overall, my results suggest that both IAPs and Bcl2 families contribute to survival of human macrophages and that IAPs are also involved in innate immune responses. Unraveling the mechanisms that control macrophage survival and function in various settings would provide therapeutic strategies aimed at eliminating cells when their survival is no longer beneficial for the host, as in the case of HIV infection or autoimmune diseases.
|
4 |
Non-Apoptotic Cell Death Induction for Colorectal Cancer TherapyPasternak, Mariah 15 September 2022 (has links)
No description available.
|
5 |
Etude des mécanismes de résistance à l'apoptose induite par l'acide ursolique dans le mélanome humain : implication de la mélanogenèse et de la voie COX-2/PGE2 / Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cellsHassan, Lama 30 March 2016 (has links)
Bien qu’au 11ème rang des cancers les plus fréquents et au 12ème rang des cancers les plus mortels, le mélanome reste un problème médical majeur préoccupant. En effet, cette pathologie, au stade métastatique, reste réfractaire à la chimiothérapie et aux thérapies ciblées. Un certain nombre d’arguments définissent la résistance à l’apoptose comme un point crucial dans l’échec aux traitements anti-cancéreux. Ces mécanismes de résistance et chimiorésistance spécifiques aux mélanomes, déclenchés en réponse aux traitements traditionnels, sont la conséquence d’une dérégulation des voies apoptotiques suite à l’activation des protéines anti-apoptotiques, l’inactivation des protéines pro-apoptotiques avec renforcement des signaux de survie (voies de survie PI3K/Akt, NF-κB et MAPK/ERK). Une étude effectuée sur la lignée murine de mélanome B16-F0 a introduit la mélanogenèse comme une forme de résistance à l’apoptose induite par l’acide ursolique (AU), un triterpène pentacyclique d’origine naturelle ; ainsi les cellules entrant en apoptose sont capables de déclencher une résistance qui se manifeste par une surproduction de la mélanine tout en retardant la mort cellulaire. D’autres études ont montré l’implication de la COX-2 dans un mécanisme de résitance à l’apoptose dans plusieurs types de cancers dans le but de retarder leur mort cellulaire. Dans cette optique, nous nous sommes intéressés à étudier l’implication de la mélanogenèse et de la voie COX-2/PGE2 dans la résistance à l’apoptose dans le mélanome et plus précisément dans un modèle d’apoptose induite par l’AU sur la lignée humaine de mélanome M4Beu. Par la suite, nous avons décrit une interaction probable entre ces deux voies distinctes, la mélanogenèse et la voie COX-2/PGE2. Dans un autre contexte, nous avons montré que l’AU inhibe les voies de survie PI3K/Akt et ERK1/2, ce qui favorise ses effets pro-apoptotique et anti-prolifératif. Notre étude permet de mieux explorer les mécanismes de résistance spécifiques aux mélanomes tout en suggérant l’effet bénéfique de l’AU comme adjuvant naturel aux traitements chimio-thérapeutiques traditionnels. / Despite the deployment of targeted therapies, the incidence and mortality rates of cutaneous melanoma is increasing very fast making it a pre-eminent public health threat. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and MAPK/ERK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. In this study, we demonstrated the involvement of melanogenesis and COX-2/PGE2 pathway in resistance to UA-induced apoptosis in human M4Beu melanoma cells. Then, we established the evidence that an interaction exists between these two pathways by investigating on the one hand the effect of inhibiting melanogenesis by N-phenylthiourea (PTU) on COX-2 expression and its product PGE2, and on the other hand the effect of inhibiting COX-2 activity using NS-398 on tyrosinase expression and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.
|
Page generated in 0.073 seconds