Spelling suggestions: "subject:"applicatications dynamiques"" "subject:"applicationoptions dynamiques""
1 |
Modèles de conception et d'exécution pour la médiation et l'intégration de servicesGarcia garza, Issac noe 18 June 2012 (has links) (PDF)
Les systèmes logiciels s'orientent vers des environnements de plus en plus hétérogènes et dynamiques. Cette évolution est induite par différents facteurs : explosion des dispositifs embarqués avec de fortes capacités de calcul, adoption rapide des services distants fournis par des tiers, mobilité des usagers et évolution du contexte associé, etc. Ces facteurs ouvrent de grandes possibilités pour la construction de nouveaux services numériques dans des domaines aussi divers que la santé, le divertissement, la domotique, ou encore le transport. Ces nouveaux domaines d'applications demandent la mise en œuvre des opérations d'intégration dans des contextes dynamiques et hétérogènes. Il est aujourd'hui admis que les approches à services facilitent l'intégration logicielle par la définition de protocoles standard de découverte et de liaison. La problématique d'intégration, au sens médiation, reste néanmoins entière. Le problème principal abordé par cette thèse est l'intégration de services dans des contextes hétérogènes et dynamiques. Plus précisément, nous avons conçu un modèle à composant spécifique à l'intégration logicielle, nommé CILIA. Ce modèle repose sur des composants, appelés médiateurs, et sur un langage d'assemblage de ces médiateurs. CILIA reprend les grands principes du Génie Logiciel tels que l'abstraction, la séparation de préoccupations et la modularité, et s'appuie sur des patrons d'intégration bien connus (Enterprise Integration Patterns). CILIA est implanté sous la forme d'un framework dynamique qui permet la mise à jour à l'exécution des solutions d'intégration. Ce framework CILIA est pleinement opérationnel et disponible en open source. Il est utilisé dans plusieurs projets collaboratifs.
|
2 |
Modèles de conception et d'exécution pour la médiation et l'intégration de services / Conception and execution models to mediate and integrate serviceGarcia Garza, Issac Noe 18 June 2012 (has links)
Les systèmes logiciels s'orientent vers des environnements de plus en plus hétérogènes et dynamiques. Cette évolution est induite par différents facteurs : explosion des dispositifs embarqués avec de fortes capacités de calcul, adoption rapide des services distants fournis par des tiers, mobilité des usagers et évolution du contexte associé, etc. Ces facteurs ouvrent de grandes possibilités pour la construction de nouveaux services numériques dans des domaines aussi divers que la santé, le divertissement, la domotique, ou encore le transport. Ces nouveaux domaines d'applications demandent la mise en œuvre des opérations d'intégration dans des contextes dynamiques et hétérogènes. Il est aujourd'hui admis que les approches à services facilitent l'intégration logicielle par la définition de protocoles standard de découverte et de liaison. La problématique d'intégration, au sens médiation, reste néanmoins entière. Le problème principal abordé par cette thèse est l'intégration de services dans des contextes hétérogènes et dynamiques. Plus précisément, nous avons conçu un modèle à composant spécifique à l'intégration logicielle, nommé CILIA. Ce modèle repose sur des composants, appelés médiateurs, et sur un langage d'assemblage de ces médiateurs. CILIA reprend les grands principes du Génie Logiciel tels que l'abstraction, la séparation de préoccupations et la modularité, et s'appuie sur des patrons d'intégration bien connus (Enterprise Integration Patterns). CILIA est implanté sous la forme d'un framework dynamique qui permet la mise à jour à l'exécution des solutions d'intégration. Ce framework CILIA est pleinement opérationnel et disponible en open source. Il est utilisé dans plusieurs projets collaboratifs. / Software systems are moving toward highly dynamic and heterogeneous environments. This dynamism is derived by several factors: the massive arrival of embedded devices with computing capabilities, the rapid adoption of newer distributed services provided by third parties, the user mobility and the constantly changing context, etc. These factors open up great opportunities for the construction of new and innovative services on several application domains, such as health-care systems, entertainment systems, home automation systems, transportation or traceability systems. These new application areas require the implementation of integration operations in dynamic and heterogeneous environments. It is well known that service-oriented computing eases the implementation of integrating systems by defining standard protocols to perform the discovery and the binding. However, some interoperability concerns, such as mediating, have been still unresolved. In this work we address the integration concern of service integration in dynamic and highly evolving environments. Specifically, we have developed an integration-specific component model called CILIA. This model is based on components, called mediators, and its assembly language. CILIA respects software engineering principles such as abstraction, separation of concerns, modularity, and anticipation of change and also it is influenced by the well-known enterprise integration patterns (EIP). CILIA has been developed as a dynamic framework that allows us to perform dynamic modifications at run-time on the integrated solutions. This framework is entirely developed and operational. It is available as an open source project and has been used by several collaborative projects.
|
3 |
Modèle de calcul et d'exécution pour des applications flots de données dynamiques avec contraintes temps réel / A model of programming languages for dynamic real-time streaming applicationsDo, Xuan Khanh 17 October 2016 (has links)
Il y a un intérêt croissant pour le développement d'applications sur les plates-formes multiprocesseurs homo- et hétérogènes en raison de l'extension de leur champ d'application et de l'apparition des puces many-core, telles que Kalray MPPA-256 (256 cœurs) ou TEGRA X1 de NVIDIA (256 GPU et 8 cœurs 64 bits CPU). Étant donné l'ampleur de ces nouveaux systèmes massivement parallèles, la mise en œuvre des applications sur ces plates-formes est difficile à cause de leur complexité, qui tend à augmenter, et de leurs exigences strictes à la fois qualitatives (robustesse, fiabilité) et quantitatives (débit, consommation d’énergie). Dans ce contexte, les Modèles de Calcul (MdC) flot de données ont été développés pour faciliter la conception de ces applications. Ces MdC sont par définition composées de filtres qui échangent des flux de données via des liens de communication. Ces modèles fournissent une représentation intuitive des applications flot de données, tout en exposant le parallélisme de tâches de l’application. En outre, ils fournissent des capacités d'analyse statique pour la vivacité et l’exécution en mémoire bornée. Cependant, de nouvelles applications de signalisation et de traitement des médias complexes présentent souvent plusieurs défis majeurs qui ne correspondent pas aux restrictions des modèles flot de données statiques classiques: 1) Comment fournir des services garantis contre des interférences inévitables qui peuvent affecter des performances temps réel ?, et 2) Comment ces langages flot de données qui sont souvent trop statiques pourraient répondre aux besoins des applications embarquées émergentes, qui nécessitent une exécution plus dynamique et plus dépendante du contexte ? Pour faire face au premier défi, nous proposons un ordonnancement hybride, nommé Self-Timed Periodic (STP), qui relie des MdC flot de données classiques et des modèles de tâches temps réel. Cet ordonnancement peut aussi être considéré comme un modèle d'exécution combinant l'ordonnancement classique dirigé seulement par les contraintes de dépendance d'exécution appelé Self-Timed Scheduling (STS), évalué comme le plus approprié pour des applications modélisées sous forme de graphes flot de données, avec l'ordonnancement périodique: STS améliore les indicateurs de performance des programmes, tandis que le modèle périodique capture les aspects de synchronisation. Nous avons évalué la performance de notre ordonnancement sur un ensemble de 10 applications et nous avons constaté que dans la plupart des cas, notre approche donne une amélioration significative de la latence par rapport à un ordonnancement purement périodique ou Strictly Periodic Scheduling (SPS), et rivalise bien avec STS. Les expériences montrent également que, pour presque tous les cas de test, STP donne un débit optimal. Sur la base de ces résultats, nous avons évalué la latence entre le temps d'initiation de tous les deux acteurs dépendants, et nous avons introduit une approche basée sur la latence pour le traitement des flux à tolérance de pannes modélisée comme un graphe Cyclo-Static Dataflow (CSDF), dans le but d'aborder des problèmes de défaillance de nœud ou de réseau… / There is an increasing interest in developing applications on homo- and heterogeneous multiprocessor platforms due to their broad availability and the appearance of many-core chips, such as the MPPA-256 chip from Kalray (256 cores) or TEGRA X1 from NVIDIA (256 GPU and 8 64-bit CPU cores). Given the scale of these new massively parallel systems, programming languages based on the dataflow model of computation have strong assets in the race for productivity and scalability, meeting the requirements in terms of parallelism, functional determinism, temporal and spatial data reuse in these systems. However, new complex signal and media processing applications often display several major challenges that do not fit the classical static restrictions: 1) How to provide guaranteed services against unavoidable interferences which can affect real-time performance?, and 2) How these streaming languages which are often too static could meet the needs of emerging embedded applications, such as context- and data-dependent dynamic adaptation? To tackle the first challenge, we propose and evaluate an analytical scheduling framework that bridges classical dataflow MoCs and real-time task models. In this framework, we introduce a new scheduling policy noted Self-Timed Periodic (STP), which is an execution model combining Self-Timed scheduling (STS), considered as the most appropriate for streaming applications modeled as data-flow graphs, with periodic scheduling: STS improves the performance metrics of the programs, while the periodic model captures the timing aspects. We evaluate the performance of our scheduling policy for a set of 10 real-life streaming applications and find that in most of the cases, our approach gives a significant improvement in latency compared to the Strictly Periodic Schedule (SPS), and competes well with STS. The experiments also show that, for more than 90% of the benchmarks, STP scheduling results in optimal throughput. Based on these results, we evaluate the latency between initiation times of any two dependent actors, and we introduce a latency-based approach for fault-tolerant stream processing modeled as a Cyclo-Static Dataflow (CSDF) graph, addressing the problem of node or network failures. For the second challenge, we introduce a new dynamic Model of Computation (MoC), called Transaction Parameterized Dataflow (TPDF), extending CSDF with parametric rates and a new type of control actor, channel and port to express dynamic changes of the graph topology and time-triggered semantics. TPDF is designed to be statically analyzable regarding the essential deadlock and boundedness properties, while avoiding the aforementioned restrictions of decidable dataflow models. Moreover, we demonstrate that TPDF can be used to accurately model task timing requirements in a great variety of situations and introduce a static scheduling heuristic to map TPDF to massively parallel embedded platforms. We validate the model and associated methods using a set of realistic applications and random graphs, demonstrating significant buffer size and performance improvements (e.g., throughput) compared to state of the art models including Cyclo-Static Dataflow (CSDF) and Scenario-Aware Dataflow (SADF).
|
4 |
iPOJO : Un modèle à composant à service flexible pour les systèmes dynamiquesEscoffier, Clement 03 December 2008 (has links) (PDF)
La récente évolution de l'informatique a ouvert la voie à de nouveaux types d'applications. En effet, la convergence de l'Internet et de l'informatique ubiquitaire permet le développement d'applications intégrant le monde virtuel dans le monde physique. Cependant, cette convergence a vu émerger de nouveaux besoins tel que le dynamisme. Bien que de nombreux travaux aient étudié cette propriété, la création d'applications pouvant évoluer et réagir aux changements environnementaux et contextuels reste très complexe. <br />Cette thèse s'intéresse à la conception, au développement et à l'exécution d'applications dynamiques. L'approche proposée s'appuie sur les récents efforts réalisés autour des modèles à composant. En effet, iPOJO, le modèle réalisé, combine l'approche à service et la programmation par composant afin d'introduire des caractéristiques de dynamisme au sein d'un modèle à composant. iPOJO propose un langage de composition permettant la conception d'applications nativement dynamiques, tout en facilitant le développement des ces applications. Celles-ci sont décrites de manière à réduire le couplage avec des implémentations de composants spécifiques. Enfin, iPOJO fournit une machine d'exécution. Cette machine propose des mécanismes d'introspection, de reconfiguration et d'extensibilité permettant la supervision d'applications ainsi que l'adaptabilité de cette plate-forme iPOJO à différents domaines. <br />L'implémentation d'iPOJO est hébergée sur le projet Apache Felix. Elle est actuellement utilisée dans différents projets industriels tel que des plates-formes domestiques, le serveur d'applications JEE JOnAS ainsi que l'intergiciel pour téléphone mobile OW2 uGASP.
|
5 |
Study and design of a manycore architecture with multithreaded processors for dynamic embedded applications / Etude et mise en œuvre d’une architecture multiprocesseur constituée de ressources de calculs multitâches pour les systèmes embarquésBechara, Charly 08 December 2011 (has links)
Les systèmes embarqués sont de plus en plus complexes et requièrent des besoins en puissance de calcul toujours plus importants. Ils doivent être capables de s'adapter à l'évolution rapide de leurs applications qui requièrent un haut niveau de performance (ordre du TOPS: Téra-opérations par seconde) et de parallélisme. Par ailleurs, la complexité des parties irrégulières étant de plus en plus importantes, des solutions de calcul performantes et adaptées doivent être mises en œuvre afin de prendre en compte leur dynamisme. Une prise en compte efficace du dynamisme réduit le déséquilibre de charge entre les ressources de calcul et améliore grandement les performances globales.Pour répondre aux besoins de ces applications de calcul intensif massivement parallèle et dynamique, nous proposons dans cette thèse l’architecture AHDAM qui signifie « Asymmetric Homogeneous with Dynamic Allocator Manycore architecture ». Cette architecture a été conçue afin de masquer efficacement la latence d’accès à la mémoire extérieure dont de nombreux accès sont nécessaires lors de la manipulation de grands volumes de données. Pour cela, des processeurs multitâches ont été utilisés. Par ailleurs, l’architecture AHDAM imbrique plusieurs niveaux de parallélisme afin de tirer partie efficacement des différentes formes de parallélisme des applications, et ainsi atteindre un haut niveau de performance. Enfin, cette architecture utilise un contrôleur centralisé pour équilibrer la charge de calcul entre ses ressources de calcul afin d’augmenter leur taux d’utilisation et supporter les applications fortement dynamiques.L’architecture AHDAM a été évaluée en portant une application de radio logicielle appelée «spectrum radio-sensing ». Avec 136 cœurs cadencés à 500 MHz, l'architecture AHDAM atteint une performance crête de 196 GOPS et répond aux exigences de l'application. / Embedded systems are getting more complex and require more intensive processing capabilities. They must be able to adapt to the rapid evolution of the high-end embedded applications that are characterized by their high computation-intensive workloads (order of TOPS: Tera Operations Per Second), and their high level of parallelism. Moreover, since the dynamism of the applications is becoming more significant, powerful computing solutions should be designed accordingly. By exploiting efficiently the dynamism, the load will be balanced between the computing resources, which will improve greatly the overall performance. To tackle the challenges of these future high-end massively-parallel dynamic embedded applications, we have designed the AHDAM architecture, which stands for “Asymmetric Homogeneous with Dynamic Allocator Manycore architecture". Its architecture permits to process applications with large data sets by efficiently hiding the processors' stall time using multithreaded processors. Besides, it exploits the parallelism of the applications at multiple levels so that they would be accelerated efficiently on dedicated resources, hence improving efficiently the overall performance. AHDAM architecture tackles the dynamism of these applications by dynamically balancing the load between its computing resources using a central controller to increase their utilization rate.The AHDAM architecture has been evaluated using a relevant embedded application from the telecommunication domain called “spectrum radio-sensing”. With 136 cores running at 500 MHz, AHDAM architecture reaches a peak performance of 196 GOPS and meets the computation requirements of the application.
|
6 |
Modèles, outils et plate-forme d'exécution pour les applications à service dynamiquesMoreno-garcia, Diana 22 February 2013 (has links) (PDF)
L'essor de l'Internet et l'évolution des dispositifs communicants ont permis l'intégration du monde informatique et du monde réel, ouvrant ainsi la voie à de nouveaux types d'applications, tels que les applications ubiquitaires et pervasives. Ces applications doivent s'exécuter dans des contextes hétérogènes, distribués et ouverts qui sont en constante évolution. Dans de tels contextes, la disponibilité des services et des dispositifs, les préférences et la localisation des utilisateurs peuvent varier à tout moment pendant l'exécution des applications. La variabilité des contextes d'exécution fait que l'exécution d'une application dépend, par exemple, des services disponibles ou des dispositifs accessibles à l'exécution. En conséquence, l'architecture d'une telle application ne peut pas être connue statiquement à la conception, au développement ou au déploiement, ce qui impose de redéfinir ce qu'est une application dynamique : comment la concevoir, la développer, l'exécuter et la gérer à l'exécution. Dans cette thèse, nous proposons une approche dirigée par les modèles pour la conception, le développement et l'exécution d'applications dynamiques. Pour cela, nous avons défini un modèle de composants à services permettant d'introduire des propriétés de dynamisme au sein d'un modèle de composants. Ce modèle permet de définir une application en intention, via un ensemble de propriétés, de contraintes et de préférences de composition. Une application est ainsi spécifiée de façon abstraite ce qui permet de contrôler la composition graduelle de l'application lors de son développement et de son exécution. Notre approche vise à effacer la frontière entre les activités effectuées avant et pendant l'exécution des applications. Pour ce faire, le même modèle et les mêmes mécanismes de composition sont utilisés de la conception jusqu'à l'exécution des applications. A l'exécution, le processus de composition considère, en plus, les services disponibles dans la plate-forme d'exécution permettant la composition opportuniste des applications ; ainsi que la variabilité du contexte d'exécution permettant l'adaptation dynamique des compositions. Nous avons mis en œuvre notre approche via un prototype nommé COMPASS, qui s'appuie sur les plates-formes CADSE pour la réalisation d'environnements logiciels de conception et de développement, et APAM pour la réalisation d'un environnement d'exécution d'applications à services dynamiques.
|
7 |
Robusta : Une approche pour la construction d'applications dynamiquesRudametkin, Walter 21 February 2013 (has links) (PDF)
Les domaines de recherche actuels, tels que l'informatique ubiquitaire et l'informatique en nuage (cloud computing), considèrent que ces environnements d'exécution sont en changement continue. Les applications dynamiques ; où les composants peuvent être ajoutés, supprimés pendant l'exécution, permettent a un logiciel de s'adapter et de s'ajuster à l'évolution des environnements, et de tenir compte de l'évolution du logiciel. Malheureusement, les applications dynamiques soulèvent des questions de conception et de développement qui n'ont pas encore été pleinement explorées. <br> Dans cette thèse, nous montrons que le dynamisme est une préoccupation transversale qui rompt avec un grand nombre d'hypothèses que les développeurs d'applications classiques sont autorisés à prendre. Le dynamisme affecte profondément la conception et développement de logiciels. S'il n'est pas manipulé correctement, le dynamisme peut " silencieusement " corrompre l'application. De plus, l'écriture d'applications dynamiques est complexe et sujette à erreur. Et compte tenu du niveau de complexité et de l'impact du dynamisme sur le processus du développement, le logiciel ne peut pas devenir dynamique sans (de large) modification et le dynamisme ne peut pas être totalement transparent (bien que beaucoup de celui-ci peut souvent être externalisées ou automatisées). <br> Ce travail a pour but d'offrir à l'architecte logiciel le contrôle sur le niveau, la nature et la granularité du dynamisme qui est nécessaire dans les applications dynamiques. Cela permet aux architectes et aux développeurs de choisir les zones de l'application où les efforts de programmation des composants dynamiques seront investis, en évitant le coût et la complexité de rendre tous les composants dynamiques. L'idée est de permettre aux architectes de déterminer l'équilibre entre les efforts à fournir et le niveau de dynamisme requis pour les besoins de l'application.
|
8 |
Modèles, outils et plate-forme d'exécution pour les applications à services dynamiquesMoreno, Diana 22 February 2013 (has links) (PDF)
L'essor de l'Internet et l'évolution des dispositifs communicants ont permis l'intégration du monde informatique et du monde réel, ouvrant ainsi la voie à de nouveaux types d'applications, tels que les applications ubiquitaires et pervasives. Ces applications doivent s'exécuter dans des contextes hétérogènes, distribués et ouverts qui sont en constante évolution. Dans de tels contextes, la disponibilité des services et des dispositifs, les préférences et la localisation des utilisateurs peuvent varier à tout moment pendant l'exécution des applications. La variabilité des contextes d'exécution fait que l'exécution d'une application dépend, par exemple, des services disponibles ou des dispositifs accessibles à l'exécution. En conséquence, l'architecture d'une telle application ne peut pas être connue statiquement à la conception, au développement ou au déploiement, ce qui impose de redéfinir ce qu'est une application dynamique : comment la concevoir, la développer, l'exécuter et la gérer à l'exécution. Dans cette thèse, nous proposons une approche dirigée par les modèles pour la conception, le développement et l'exécution d'applications dynamiques. Pour cela, nous avons défini un modèle de composants à services permettant d'introduire des propriétés de dynamisme au sein d'un modèle de composants. Ce modèle permet de définir une application en intention, par un ensemble de propriétés, de contraintes et de préférences de composition. Une application est ainsi spécifiée de façon abstraite ce qui permet de contrôler la composition graduelle de l'application lors de son développement et de son exécution. Notre approche vise à effacer la frontière entre les activités effectuées avant et pendant l'exécution des applications. Pour ce faire, le même modèle et les mêmes mécanismes de composition sont utilisés de la conception jusqu'à l'exécution des applications. A l'exécution, le processus de composition considère, en plus, les services disponibles dans la plate-forme d'exécution permettant la composition opportuniste des applications ; ainsi que la variabilité du contexte d'exécution permettant l'adaptation dynamique des compositions. Nous avons mis en oeuvre notre approche à travers le prototype nommé COMPASS, qui s'appuie sur les plates-formes CADSE pour la réalisation d'environnements logiciels de conception et de développement, et APAM pour la réalisation d'un environnement d'exécution d'applications à services dynamiques.
|
9 |
Modèles, outils et plate-forme d’exécution pour les applications à service dynamiques / Models, tools and execution platform for dynamique service-oriented applicationsMoreno-Garcia, Diana 22 February 2013 (has links)
L'essor de l'Internet et l'évolution des dispositifs communicants ont permis l'intégration du monde informatique et du monde réel, ouvrant ainsi la voie à de nouveaux types d'applications, tels que les applications ubiquitaires et pervasives. Ces applications doivent s'exécuter dans des contextes hétérogènes, distribués et ouverts qui sont en constante évolution. Dans de tels contextes, la disponibilité des services et des dispositifs, les préférences et la localisation des utilisateurs peuvent varier à tout moment pendant l'exécution des applications. La variabilité des contextes d'exécution fait que l'exécution d'une application dépend, par exemple, des services disponibles ou des dispositifs accessibles à l'exécution. En conséquence, l'architecture d'une telle application ne peut pas être connue statiquement à la conception, au développement ou au déploiement, ce qui impose de redéfinir ce qu'est une application dynamique : comment la concevoir, la développer, l'exécuter et la gérer à l'exécution. Dans cette thèse, nous proposons une approche dirigée par les modèles pour la conception, le développement et l'exécution d'applications dynamiques. Pour cela, nous avons défini un modèle de composants à services permettant d'introduire des propriétés de dynamisme au sein d'un modèle de composants. Ce modèle permet de définir une application en intention, via un ensemble de propriétés, de contraintes et de préférences de composition. Une application est ainsi spécifiée de façon abstraite ce qui permet de contrôler la composition graduelle de l'application lors de son développement et de son exécution. Notre approche vise à effacer la frontière entre les activités effectuées avant et pendant l'exécution des applications. Pour ce faire, le même modèle et les mêmes mécanismes de composition sont utilisés de la conception jusqu'à l'exécution des applications. A l'exécution, le processus de composition considère, en plus, les services disponibles dans la plate-forme d'exécution permettant la composition opportuniste des applications ; ainsi que la variabilité du contexte d'exécution permettant l'adaptation dynamique des compositions. Nous avons mis en œuvre notre approche via un prototype nommé COMPASS, qui s'appuie sur les plates-formes CADSE pour la réalisation d'environnements logiciels de conception et de développement, et APAM pour la réalisation d'un environnement d'exécution d'applications à services dynamiques. / The growth of the Internet and the evolution of communicating devices have allow the integration of the computer world and the real world, paving the way for developing new types of applications such as pervasive and ubiquitous ones. These applications must run in heterogeneous, distributed and open environments that evolve constantly. In such environments, the availability of services and devices, the preferences and location of users may change at any time during the execution of applications. The variability of the execution context makes the execution of an application dependent on the available services and devices. Building applications capable of evolving dynamically to their execution context is a challenging task. In fact, the architecture of such an application cannot be fully known nor statically specified at design, development or deployment times. It is then needed to redefine the concept of dynamic application in order to cover the design, development, execution and management phases, and to enable thus the dynamic construction and evolution of applications. In this dissertation, we propose a model-driven approach for the design, development and execution of dynamic applications. We defined a component service model that considers dynamic properties within a component model. This model allows defining an application by its intention (its goal) through a set of composition properties, constraints and preferences. An application is thus specified in an abstract way, which allows controlling its gradual composition during development and execution times. Our approach aims to blur the boundary between development-time and runtime. Thus, the same model and the same composition mechanisms are used from design to runtime. At runtime, the composition process considers also the services available in the execution platform in order to compose applications opportunistically; and the variability of the execution context in order to adapt compositions dynamically. We implemented our approach through a prototype named COMPASS, which relies on the CADSE platform for building software design and development environments, and on the APAM platform for building an execution environment for dynamic service-based applications.
|
Page generated in 0.0995 seconds