Spelling suggestions: "subject:"apprentissage automatique"" "subject:"dapprentissage automatique""
171 |
Hydroinformatics and diversity in hydrological ensemble prediction systemsBrochero, Darwin 19 April 2018 (has links)
Nous abordons la prévision probabiliste des débits à partir de deux perspectives basées sur la complémentarité de multiples modèles hydrologiques (diversité). La première exploite une méthodologie hybride basée sur l’évaluation de plusieurs modèles hydrologiques globaux et d’outils d’apprentissage automatique pour la sélection optimale des prédicteurs, alors que la seconde fait recourt à la construction d’ensembles de réseaux de neurones en forçant la diversité. Cette thèse repose sur le concept de la diversité pour développer des méthodologies différentes autour de deux problèmes pouvant être considérés comme complémentaires. La première approche a pour objet la simplification d’un système complexe de prévisions hydrologiques d’ensemble (dont l’acronyme anglais est HEPS) qui dispose de 800 scénarios quotidiens, correspondant à la combinaison d’un modèle de 50 prédictions météorologiques probabilistes et de 16 modèles hydrologiques globaux. Pour la simplification, nous avons exploré quatre techniques: la Linear Correlation Elimination, la Mutual Information, la Backward Greedy Selection et le Nondominated Sorting Genetic Algorithm II (NSGA-II). Nous avons plus particulièrement développé la notion de participation optimale des modèles hydrologiques qui nous renseigne sur le nombre de membres météorologiques représentatifs à utiliser pour chacun des modèles hydrologiques. La seconde approche consiste principalement en la sélection stratifiée des données qui sont à la base de l’élaboration d’un ensemble de réseaux de neurones qui agissent comme autant de prédicteurs. Ainsi, chacun d’entre eux est entraîné avec des entrées tirées de l’application d’une sélection de variables pour différents échantillons stratifiés. Pour cela, nous utilisons la base de données du deuxième et troisième ateliers du projet international MOdel Parameter Estimation eXperiment (MOPEX). En résumé, nous démontrons par ces deux approches que la diversité implicite est efficace dans la configuration d’un HEPS de haute performance. / In this thesis, we tackle the problem of streamflow probabilistic forecasting from two different perspectives based on multiple hydrological models collaboration (diversity). The first one favours a hybrid approach for the evaluation of multiple global hydrological models and tools of machine learning for predictors selection, while the second one constructs Artificial Neural Network (ANN) ensembles, forcing diversity within. This thesis is based on the concept of diversity for developing different methodologies around two complementary problems. The first one focused on simplifying, via members selection, a complex Hydrological Ensemble Prediction System (HEPS) that has 800 daily forecast scenarios originating from the combination of 50 meteorological precipitation members and 16 global hydrological models. We explore in depth four techniques: Linear Correlation Elimination, Mutual Information, Backward Greedy Selection, and Nondominated Sorting Genetic Algorithm II (NSGA-II). We propose the optimal hydrological model participation concept that identifies the number of meteorological representative members to propagate into each hydrological model in the simplified HEPS scheme. The second problem consists in the stratified selection of data patterns that are used for training an ANN ensemble or stack. For instance, taken from the database of the second and third MOdel Parameter Estimation eXperiment (MOPEX) workshops, we promoted an ANN prediction stack in which each predictor is trained on input spaces defined by the Input Variable Selection application on different stratified sub-samples. In summary, we demonstrated that implicit diversity in the configuration of a HEPS is efficient in the search for a HEPS of high performance.
|
172 |
A Machine Learning Approach for the Smart Charging of Electric VehiclesLopez, Karol Lina 21 December 2024 (has links)
Avec l’adoption croissante des véhicules électriques, il y a un intérêt pour utiliser des tarifs dynamiques dont le prix dépend de la demande actuelle, pour encourager les utilisateurs à recharger leurs véhicules en période de faible demande évitant les pics d’électricité pouvant dépasser la capacité installée. Le problème que devaient affronter les utilisateurs de véhicules électriques est qu’ils doivent s’assurer que l’énergie électrique présente dans les batteries est suffisante pour les déplacements et que les périodes de recharge correspondent à des périodes où le prix de l’électricité est bas. La plupart des approches actuelles de planification de recharge supposent une connaissance parfaite des futurs prix de l’électricité et de l’utilisation du véhicule, ce qui nuit à leur applicabilité dans la pratique. Cette thèse considère la modélisation de la recharge intelligente des véhicules électriques pour déterminer, lors des sessions de connexion, les moments où le véhicule doit se recharger afin de minimiser le coût payé pour l’énergie de ses déplacements. La thèse comporte quatre principales contributions: 1) Modèle de recharge optimale des véhicules électriques pour générer une série de décisions en utilisant la connaissance a priori du prix de l’électricité et de l’énergie utilisée, en utilisant la programmation dynamique comme méthode d’optimisation. 2) Création d’un modèle de système d’information incluant des variables connexes au modèle de recharge des véhicules électriques dans un cadre guidé par des données. 3) Méthode de sélection des données pertinentes utilisant la stratification de données pouvant réduire significativement le temps requis pour entraîner les modèles de prévision avec des résultats proches de ceux obtenus en utilisant l’ensemble de données complet. 4) Modèle de classification en ligne qui permet de déterminer s’il faut charger ou non le véhicule à l’aide de modèles d’apprentissage automatique qui peuvent générer, en temps réel, une décision de recharge quasi-optimale sans tenir compte d’une connaissance de l’information future. Nous démontrons comment la combinaison d’une méthode d’optimisation hors ligne, telle que la programmation dynamique, avec des modèles d’apprentissage automatique et un système d’information adéquat peut fournir une solution très proche de l’optimum global, sans perte d’applicabilité dans le monde réel. De plus, la polyvalence de l’approche proposée permet d’envisager l’intégration d’un plus grand nombre de variables à l’entrée du modèle, ainsi que d’autres actions comme par exemple fournir d’énergie au réseau électrique pour aider à réduire les pics de demande ce qui pourrait être utile dans un contexte de vehicle-to-grid (V2G). / With the increasing adoption of electric vehicles, there is an interest to use dynamic tariffs where the price depends on the current demand, encouraging users to charge their vehicles in periods of low demand, avoiding electricity peaks that may exceed the installed capacity. The issue an electric vehicle user must tackle is that it should ensure that its electric power is sufficient for its trips and that the recharge periods correspond to periods where the price of electricity is low. Most current charge scheduling approaches assume a perfect knowledge of the future prices and car usage, which hinders their applicability in practice. This thesis considers the modelling of the intelligent recharge of electric vehicles to determine, during the connection sessions, the times when the vehicle may be charged in order to minimize the overall energy cost. The thesis has four main contributions: 1) Optimum electric vehicle recharge model to generate a series of decisions using full knowledge of the price of electricity and energy used using dynamic programming as a method of optimization. 2) Creation of an information system model which includes variables relevant to the recharging model of electric vehicles in a framework data-driven. 3) Method of selecting relevant data using the stratification by clusters which can significantly decrease the time required to train forecasting models with results close to those obtained using the complete dataset. 4) Classification model which allows the determination of whether or not to charge the vehicle using machine learning models that can generate, in real time, a near-optimal recharge decision without considering perfect knowledge of the future information. We demonstrated how combining an offline optimization method, such as dynamic programming with machine learning models and a coherent information system can provide a solution very close to the global optimum without loss of applicability in real-world. Moreover, the versatility of the proposed approach allows the consideration of the integration of a larger set of variables at the input of the model, as well as other actions such as for example supplying energy to the network to further help reducing demand peaks which could be useful in a vehicle-to-grid context (V2G).
|
173 |
Détection de menaces internes par apprentissage automatique non superviséBertrand, Simon 26 November 2023 (has links)
Titre de l'écran-titre (visionné le 5 juin 2023) / Les menaces internes, ou en anglais Insider Threat, surviennent lorsqu'un individu ayant des accès privilégiés au sein d'une organisation les utilise d'une façon causant du tort à l'organisation. L'employé peut réaliser ces actions dangereuses de façon intentionnelle ou non intentionnelle. Les menaces internes sont très variées ce qui les rend particulièrement complexes à détecter. La confidentialité, l'intégrité et la disponibilité des données sont des préoccupations croissantes pour les organisations d'aujourd'hui. Malgré tout, l'étendue de l'impact des menaces internes est souvent sous-estimée. En effet, même si les menaces internes ne représentent qu'une fraction de toutes les cyberattaques, les dangers en lien avec les menaces internes sont réels. Dans un premier lieu, les attaques internes peuvent causer plus de dommages aux organisations que les attaques traditionnelles. Ceci s'explique en partie par la grande connaissance de l'organisation, ainsi que les accès privilégiés, qu'ont les employés réalisant ces attaques. Ces derniers sont donc en mesure de facilement perpétrer des actions dangereuses sans éveiller de soupçons. De plus, dans les dernières années, plusieurs études suggèrent que la majorité des organisations souffrent de menaces internes chaque année [2]. La détection de menaces internes est ainsi un problème pertinent qui attire beaucoup de chercheurs. Une des stratégies couramment utilisée pour faire la détection de menaces internes est de modéliser les comportements des employés d'une organisation et d'identifier toute divergence significative comme une menace potentielle. Pour ce faire, les journaux d'audit, décrivant tous les évènements réalisés par les membres d'une organisation dans le réseau informatique, sont des sources d'informations privilégiées dans le domaine pour apprendre les comportements typiques des utilisateurs. Dans ce mémoire, nous présentons deux solutions originales de détection de menaces internes utilisant des journaux d'audit et des techniques d'apprentissage automatique non supervisé afin d'apprendre les comportements utilisateur et détecter les comportements malicieux. Les deux solutions présentent des résultats compétitifs par rapport à l'état de l'art, et ce en offrant des caractéristiques qui facilitent leur implémentation dans de vraies organisations. / Insider threats occur when a privileged member of an organization wrong fully uses his access in a way that causes harm to his organization. Those damaging actions can be intentional, as in the case of theft or sabotage, however, un intentional dangerous actions are also to be considered, which adds to the complexity of the insider threat. The insider threat is a broad type of cyber menace, making its detection particularly difficult. For organizations, the confidentiality, integrity, and availability of their information are an increasing concern. Yet many under estimate the magnitude of the insider threats against the maintenance of those ideals. Indeed, even though insider threats are only a fraction of all existing cyber threats, this type of menace presents a real and unique danger for organizations. Firstly, an insider threat can be more damaging to an organization than a traditional cyberattack. This is mainly explicable by the privileged accesses and great domain knowledge that the insider possesses over an outsider. The insider has then a better opportunity to use his access and domain knowledge to carry out efficiently and quietly the attack. Moreover, over the last few years, some reports suggest that most institutions yearly suffer from that kind of cyber threat [2]. Insider threat detection is therefore a relevant problem that attracted many researchers to deploy their efforts in the last decades. One common strategy to detect malicious insiders is by modeling the behaviors of the users and identifying any significant divergence as a potential threat. In that matter, audit data, describing the activity of every member of an organization in the network, are regularly chosen to learn user behaviors using statistical or machine learning models. In the present work, we propose two insider threat detection systems that leverage audit data to learn user behaviors and detect divergent conduct in an unsupervised fashion. Both solutions are competitive with state-of-the-art techniques, and were developed considering many challenges in the field, like being easy to implement in a real-world scenario and considering events dependencies.
|
174 |
VENCE : un modèle performant d'extraction de résumés basé sur une approche d'apprentissage automatique renforcée par de la connaissance ontologiqueMotta, Jesus Antonio 23 April 2018 (has links)
De nombreuses méthodes et techniques d’intelligence artificielle pour l’extraction d'information, la reconnaissance des formes et l’exploration de données sont utilisées pour extraire des résumés automatiquement. En particulier, de nouveaux modèles d'apprentissage automatique semi supervisé avec ajout de connaissance ontologique permettent de choisir des phrases d’un corpus en fonction de leur contenu d'information. Le corpus est considéré comme un ensemble de phrases sur lequel des méthodes d'optimisation sont appliquées pour identifier les attributs les plus importants. Ceux-ci formeront l’ensemble d’entrainement, à partir duquel un algorithme d’apprentissage pourra abduire une fonction de classification capable de discriminer les phrases de nouveaux corpus en fonction de leur contenu d’information. Actuellement, même si les résultats sont intéressants, l’efficacité des modèles basés sur cette approche est encore faible notamment en ce qui concerne le pouvoir discriminant des fonctions de classification. Dans cette thèse, un nouveau modèle basé sur l’apprentissage automatique est proposé et dont l’efficacité est améliorée par un ajout de connaissance ontologique à l’ensemble d’entrainement. L’originalité de ce modèle est décrite à travers trois articles de revues. Le premier article a pour but de montrer comment des techniques linéaires peuvent être appliquées de manière originale pour optimiser un espace de travail dans le contexte du résumé extractif. Le deuxième article explique comment insérer de la connaissance ontologique pour améliorer considérablement la performance des fonctions de classification. Cette insertion se fait par l’ajout, à l'ensemble d’entraînement, de chaines lexicales extraites de bases de connaissances ontologiques. Le troisième article décrit VENCE , le nouveau modèle d’apprentissage automatique permettant d’extraire les phrases les plus porteuses d’information en vue de produire des résumés. Une évaluation des performances de VENCE a été réalisée en comparant les résultats obtenus avec ceux produits par des logiciels actuels commerciaux et publics, ainsi que ceux publiés dans des articles scientifiques très récents. L’utilisation des métriques habituelles de rappel, précision et F_measure ainsi que l’outil ROUGE a permis de constater la supériorité de VENCE. Ce modèle pourrait être profitable pour d’autres contextes d’extraction d’information comme pour définir des modèles d’analyse de sentiments. / Several methods and techniques of artificial intelligence for information extraction, pattern recognition and data mining are used for extraction of summaries. More particularly, new machine learning models with the introduction of ontological knowledge allow the extraction of the sentences containing the greatest amount of information from a corpus. This corpus is considered as a set of sentences on which different optimization methods are applied to identify the most important attributes. They will provide a training set from which a machine learning algorithm will can abduce a classification function able to discriminate the sentences of new corpus according their information content. Currently, even though the results are interesting, the effectiveness of models based on this approach is still low, especially in the discriminating power of classification functions. In this thesis, a new model based on this approach is proposed and its effectiveness is improved by inserting ontological knowledge to the training set. The originality of this model is described through three papers. The first paper aims to show how linear techniques could be applied in an original way to optimize workspace in the context of extractive summary. The second article explains how to insert ontological knowledge to significantly improve the performance of classification functions. This introduction is performed by inserting lexical chains of ontological knowledge based in the training set. The third article describes VENCE , the new machine learning model to extract sentences with the most information content in order to produce summaries. An assessment of the VENCE performance is achieved comparing the results with those produced by current commercial and public software as well as those published in very recent scientific articles. The use of usual metrics recall, precision and F_measure and the ROUGE toolkit showed the superiority of VENCE. This model could benefit other contexts of information extraction as for instance to define models for sentiment analysis.
|
175 |
Adaptive Dynamics Learning and Q-initialization in the context of multiagent learningBurkov, Andriy 12 April 2018 (has links)
L’apprentissage multiagent est une direction prometteuse de la recherche récente et à venir dans le contexte des systèmes intelligents. Si le cas mono-agent a été beaucoup étudié pendant les deux dernières décennies, le cas multiagent a été peu étudié vu sa complexité. Lorsque plusieurs agents autonomes apprennent et agissent simultanément, l’environnement devient strictement imprévisible et toutes les suppositions qui sont faites dans le cas mono-agent, telles que la stationnarité et la propriété markovienne, s’avèrent souvent inapplicables dans le contexte multiagent. Dans ce travail de maîtrise nous étudions ce qui a été fait dans ce domaine de recherches jusqu’ici, et proposons une approche originale à l’apprentissage multiagent en présence d’agents adaptatifs. Nous expliquons pourquoi une telle approche donne les résultats prometteurs lorsqu’on la compare aux différentes autres approches existantes. Il convient de noter que l’un des problèmes les plus ardus des algorithmes modernes d’apprentissage multiagent réside dans leur complexité computationnelle qui est fort élevée. Ceci est dû au fait que la taille de l’espace d’états du problème multiagent est exponentiel en le nombre d’agents qui agissent dans cet environnement. Dans ce travail, nous proposons une nouvelle approche de la réduction de la complexité de l’apprentissage par renforcement multiagent. Une telle approche permet de réduire de manière significative la partie de l’espace d’états visitée par les agents pour apprendre une solution efficace. Nous évaluons ensuite nos algorithmes sur un ensemble d’essais empiriques et présentons des résultats théoriques préliminaires qui ne sont qu’une première étape pour former une base de la validité de nos approches de l’apprentissage multiagent. / Multiagent learning is a promising direction of the modern and future research in the context of intelligent systems. While the single-agent case has been well studied in the last two decades, the multiagent case has not been broadly studied due to its complex- ity. When several autonomous agents learn and act simultaneously, the environment becomes strictly unpredictable and all assumptions that are made in single-agent case, such as stationarity and the Markovian property, often do not hold in the multiagent context. In this Master’s work we study what has been done in this research field, and propose an original approach to multiagent learning in presence of adaptive agents. We explain why such an approach gives promising results by comparing it with other different existing approaches. It is important to note that one of the most challenging problems of all multiagent learning algorithms is their high computational complexity. This is due to the fact that the state space size of multiagent problem is exponential in the number of agents acting in the environment. In this work we propose a novel approach to the complexity reduction of the multiagent reinforcement learning. Such an approach permits to significantly reduce the part of the state space needed to be visited by the agents to learn an efficient solution. Then we evaluate our algorithms on a set of empirical tests and give a preliminary theoretical result, which is first step in forming the basis of validity of our approaches to multiagent learning.
|
176 |
An integrated decision analytic framework of machine learning with multi-criteria decision making for patient prioritization in elective surgeriesJamshidi Shahvar, Nima 13 December 2023 (has links)
Objectif: De nombreux centres de santé à travers le monde utilisent des critères d'évaluation des préférences cliniques (CPAC) pour donner la priorité aux patients pour accéder aux chirurgies électives. Le processus de priorisation clinique du patient utilise à cette fin les caractéristiques du patient et se compose généralement de critères cliniques, d'expériences de patients précédemment hospitalisés et de commentaires sur les réseaux sociaux. Le but de la hiérarchisation des patients est de déterminer un ordre précis pour les patients et de déterminer combien chaque patient bénéficiera de la chirurgie. En d'autres termes, la hiérarchisation des patients est un type de problème de prise de décision qui détermine l'ordre de ceux qui ont le plus bénéficié de la chirurgie. Cette étude vise à développer une méthodologie hybride en intégrant des algorithmes d'apprentissage automatique et des techniques de prise de décision multicritères (MCDM) afin de développer un nouveau modèle de priorisation des patients. L'hypothèse principale est de valider le fait que l'intégration d'algorithmes d'apprentissage automatique et d'outils MCDM est capable de mieux prioriser les patients en chirurgie élective et pourrait conduire à une plus grande précision. Méthode: Cette étude vise à développer une méthodologie hybride en intégrant des algorithmes d'apprentissage automatique et des techniques de prise de décision multicritères (MCDM) afin de développer un modèle précis de priorisation des patients. Dans un premier temps, une revue de la littérature sera effectuée dans différentes bases de données pour identifier les méthodes récemment développées ainsi que les facteurs de risque / attributs les plus courants dans la hiérarchisation des patients. Ensuite, en utilisant différentes méthodes MCDM telles que la pondération additive simple (SAW), le processus de hiérarchie analytique (AHP) et VIKOR, l'étiquette appropriée pour chaque patient sera déterminée. Dans la troisième étape, plusieurs algorithmes d'apprentissage automatique seront appliqués pour deux raisons: d'abord la sélection des caractéristiques parmi les caractéristiques communes identifiées dans la littérature et ensuite pour prédire les classes de patients initialement déterminés. Enfin, les mesures détaillées des performances de prédiction des algorithmes pour chaque méthode seront déterminées. Résultats: Les résultats montrent que l'approche proposée a atteint une précision de priorisation assez élevée(~70 %). Cette précision a été obtenue sur la base des données de 300 patients et elle pourrait être considérablement améliorée si nous avions accès à plus de données réelles à l'avenir. À notre connaissance, cette étude présente la première et la plus importante du genre à combiner efficacement les méthodes MCDM avec des algorithmes d'apprentissage automatique dans le problème de priorisation des patients en chirurgie élective. / Objective: Many healthcare centers worldwide use Clinical Preference Assessment criteria (CPAC) to prioritize patients for accessing elective surgeries [44]. The patient's clinical prioritization process uses patient characteristics for this purpose and usually consists of clinical criteria, experiences of patients who have been previously hospitalized, and comments on social media. The sense of patient prioritization is to determine an accurate ordering for patients and how much each patient will benefit from the surgery. This research intends to build a hybrid approach for creating a new patient prioritizing model by combining machine learning algorithms with multi-criteria decision-making (MCDM) methodologies. The central hypothesis is to validate that the integration of machine learning algorithms and MCDM tools can better prioritize elective surgery patients and lead to higher accuracy. Method: As a first step, a literature review was performed in different databases to identify the recently developed methods and the most common criteria in patient prioritization. Then, using various MCDM methods, including simple additive weighting (SAW), analytical hierarchy process (AHP), and VIKOR, the appropriate label for each patient was determined. As the third step, several machine learning algorithms were applied to predict each patient's classes. Finally, we established the algorithms' precise prediction performance metrics for each approach. Results: The results show that the proposed approach has achieved relatively high prioritization accuracy (~70%). This accuracy has been obtained based on the data from 300 patients, and it could be significantly improved if we have access to more accurate data in the future. To the best of our knowledge, this research is the first of its type to demonstrate the effectiveness of combining MCDM methodologies with machine learning algorithms in patient prioritization problems in elective surgery.
|
177 |
Molecular and ensemble learning approaches to study the impact of climate factors on the evolution of cranberry fruit rotAghel, Khadijeh 25 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles. / La canneberge à gros fruits (Vaccinium macrocarpon) est un arbuste vivace cultivé principalement au Canada et aux États-Unis. Au cours des dernières années, le Québec est devenu un important producteur de canneberge ce qui en fait le plus grand producteur au Canada et le plus grand producteur de canneberge biologique au monde. Avec cette augmentation de la production, la pourriture des fruits de la canneberge (PFC), une maladie causée par 12 espèces de champignons, est devenue l'un des principaux facteurs affectant le rendement. Tirant partie de la technique moléculaire pour identifier l'agent pathogène en cause, cette étude s'est fixée pour objectif d'évaluer l'évolution temporelle de la PFC en déterminant et en comparant l'abondance des espèces fongiques sur deux années de production, 2018 et 2020, à partir de trois fermes (biologique, transition - sans fongicides depuis 2015, conventionnelle - trois applications de fongicides par année) réparties dans trois régions distinctes du Québec (respectivement, Saguenay - Lac - St - Jean, Lanaudière, Centre du Québec). Comme prévu, des variations significatives de la diversité fongique et de l'abondance relative ont été observées entre les années et les fermes. Cependant, les champignons prédominants au Québec sont demeurés les mêmes au fil des sites et des périodes d'échantillonnage, à l'exception d'une diminution de Colletotrichum fructivorum couplée à une augmentation de Strasseria geniculata entre 2018 et 2020. De plus, Monilinia oxycocci a été retrouvé presque exclusivement dans la ferme biologique, les deux années à l'étude, ce qui indique que les fongicides peuvent réprimer cet agent pathogène efficacement avec un effet durable. De plus, la plus grande diversité de champignons identifiés dans la ferme biologique confirme que les applications de fongicides ont réduit l'incidence de la PFC et la composition fongique. Bien que la température et les précipitations soient connues pour influencer le développement des maladies fongiques des plantes, les connaissances sur l'impact des facteurs environnementaux sur la dynamique spatio-temporelle des PFC sont limitées. Sur la base des données climatiques obtenues d'Environnement et Changement climatique Canada pour les trois fermes enquêtées, les effets des facteurs climatiques sur les variations observées de l'abondance des espèces ont été évalués en utilisant la modèle d'amplification du gradient d'apprentissage automatique, qui est un algorithme d'apprentissage automatique supervisé robuste. Étonnamment, la température et les précipitations n'étaient pas les facteurs les plus importants influençant l'incidence des champignons pathogènes causant la PFC au Québec. Les analyses ont révélé l'impact inattendu de pression de l'air sur la présence des espèces tout en corroborant celui des applications de fongicides. L'étude de l'effet des facteurs climatiques sur l'incidence de la PFC a abouti aux premiers résultats sur l'impact de leur évolution dans l'espace et dans le temps. En raison de leur influence sur les espèces de la PFC, le présent travail confirme qu'une estimation plus poussée de leur importance pourrait mener à une meilleure gestion de cette maladie. / Large cranberry (Vaccinium macrocarpon) is a perennial shrub grown mainly in Canada and the United States. In recent years, Québec has become a major producer of cranberry making it the largest in Canada and the largest of organic cranberry in the world. With this increase in production, cranberry fruit rot (CFR), a disease caused by 12 fungal species, has become one of the major factors affecting yield. Taking advantage of molecular techniques to identify the pathogens involved, this study set for objective to assess the temporal evolution of CFR by determining and comparing the abundance of CFR fungal species in two years, 2018 and 2020, from three cranberry farms (organic, transitional - without fungicides since 2015, conventional - three fungicide application per year), located in three distinctive regions of Quebec. As expected, significant variations in both fungal diversity and species relative abundance (SRA) were observed between years and farms. However, the predominant CFR fungi in Québec remained the same over the sampling sites and periods, with the exception of a decrease of Colletotrichum fructivorum coupled with an increase of Strasseria geniculata between 2018 and 2020. In addition, Monilinia oxycocci was almost exclusively found in the organic farm for the two years under study, indicating that fungicides can control this pathogen efficiently with a lasting effect. In addition, the higher diversity of fungi identified in the organic farm confirms that fungicide applications lowered CFR incidence and fungal composition. Although temperature and precipitations are known to influence the development of fungal plant diseases, there is limited knowledge of the impact of environmental factors on the spatio-temporal dynamics of CFR. Based on climatic data obtained from Environment and Climate Change Canada for the three surveyed farms, the effects of climatic factors on the observed variations in species abundance were evaluated by using the extreme gradient boost method, which is a robust supervised machine learning algorithm. Surprisingly, temperature and precipitations were not the most important factors influencing the incidence of CFR fungal pathogens in Québec. Analyses revealed the unexpected impact of air pressure on the presence of CFR species while corroborating that of fungicide applications. Investigating the effect of climatic factors on the incidence of the CFR resulted in the first outcomes on the impact of their evolution over space and time. Because of their influence on CFR species, the present work confirms that further estimation of their importance could result in better management of this disease.
|
178 |
Estimation de l'état fonctionnel de l'opérateurGagnon, Olivier 04 September 2024 (has links)
L’estimation de l’état fonctionnel de l’opérateur (c’est-à-dire le patron multidimensionnel de conditions physiologiques et comportementales qui régule les performances) a un grand potentiel pour l’augmentation de la sécurité et de la fiabilité de systèmes critiques. L’apprentissage automatique, qui a connu des avancées importantes au cours des dernières années, est une avenue à explorer pour effectuer cette estimation. Une problématique dans l’utilisation de ces techniques est la formalisation de l’OFS en une mesure objective permettant de fournir un signal d’entraînement à l’apprentissage automatique. Ce mémoire présente une mesure, la performance dynamique décontextualisée, permettant d’utiliser ces techniques pour estimer l’état fonctionnel de plusieurs participants, pour plusieurs tâches expérimentales différentes. Cet ouvrage explore également les performances obtenues par plusieurs techniques d’apprentissage automatique dans divers contextes. Entre autres, la généralisation des modèles entraînés à de nouveaux participants ou de nouvelles tâches expérimentales et l’utilisation du contexte expérimental sont étudiées. / The assessment of an operator’s functional state (i.e., the multidimensional pattern of human psycho-physiological conditions that mediates performance) has great potential for increasing safety and reliability of critical systems. Machine learning, which has had success in recent years, is a technique which should be investigated for this task. An open question in the use of machine learning algorithms for the assessment of the operator’s functional state is the formalization of the operator’s state in an objective measure that can provide a training signal for the algorithms. This Master’s thesis introduces the decontextualized dynamic performance, a measure which enables the use of machine learning for many experimental tasks and many participants simultaneously.This work also explores the performances obtained by machine learning techniques in some contexts. The generalization of the trained models to new participants, or new tasks as well as the utilization of the training context is investigated.
|
179 |
Optimization of storage and picking systems in warehousesFernandes Da Costa Silva, Allyson 01 March 2024 (has links)
La croissance du commerce électronique exige une hausse des performances des systèmes d'entreposage, qui sont maintenant repensés pour faire face à un volume massif de demandes à être satisfait le plus rapidement possible. Le système manuel et le système à robots mobile (SRM) sont parmi les plus utilisés pour ces activités. Le premier est un système centré sur l'humain pour réaliser des opérations complexes que les robots actuels ne peuvent pas effectuer. Cependant, les nouvelles générations de robots autonomes mènent à un remplacement progressif par le dernier pour augmenter la productivité. Quel que soit le système utilisé, plusieurs problèmes interdépendants doivent être résolus pour avoir des processus de stockage et de prélèvement efficaces. Les problèmes de stockage concernent les décisions d'où stocker les produits dans l'entrepôt. Les problèmes de prélèvement incluent le regroupement des commandes à exécuter ensemble et les itinéraires que les cueilleurs et les robots doivent suivre pour récupérer les produits demandés. Dans le système manuel, ces problèmes sont traditionnellement résolus à l'aide de politiques simples que les préparateurs peuvent facilement suivre. Malgré l'utilisation de robots, la même stratégie de solution est répliquée aux problèmes équivalents trouvés dans le SRM. Dans cette recherche, nous étudions les problèmes de stockage et de prélèvement rencontrés lors de la conception du système manuel et du SRM. Nous développons des outils d'optimisation pour aider à la prise de décision pour mettre en place leurs processus, en améliorant les mesures de performance typiques de ces systèmes. Certains problèmes traditionnels sont résolus avec des techniques améliorées, tandis que d'autres sont intégrés pour être résolus ensemble au lieu d'optimiser chaque sous-système de manière indépendante. Nous considérons d'abord un système manuel avec un ensemble connu de commandes et intégrons les décisions de stockage et de routage. Le problème intégré et certaines variantes tenant compte des politiques de routage communes sont modélisés mathématiquement. Une métaheuristique générale de recherche de voisinage variable est présentée pour traiter des instances de taille réelle. Des expériences attestent de l'efficience de la métaheuristique proposée par rapport aux modèles exacts et aux politiques de stockage communes. Lorsque les demandes futures sont incertaines, il est courant d'utiliser une stratégie de zonage qui divise la zone de stockage en zones et attribue les produits les plus demandés aux meilleures zones. Les tailles des zones sont à déterminer. Généralement, des dimensions arbitraires sont choisies, mais elles ignorent les caractéristiques de l'entrepôt et des demandes. Nous abordons le problème de dimensionnement des zones pour déterminer quels facteurs sont pertinents pour choisir de meilleures tailles de zone. Les données générées à partir de simulations exhaustives sont utilisées pour trainer quatre modèles de régression d'apprentissage automatique - moindres carrés ordinaire, arbre de régression, forêt aléatoire et perceptron multicouche - afin de prédire les dimensions optimales des zones en fonction de l'ensemble de facteurs pertinents identifiés. Nous montrons que tous les modèles entraînés suggèrent des dimensions sur mesure des zones qui performent meilleur que les dimensions arbitraires couramment utilisées. Une autre approche pour résoudre les problèmes de stockage pour le système manuel et pour le SRM considère les corrélations entre les produits. L'idée est que les produits régulièrement demandés ensemble doivent être stockés près pour réduire les coûts de routage. Cette politique de stockage peut être modélisée comme une variante du problème d'affectation quadratique (PAQ). Le PAQ est un problème combinatoire traditionnel et l'un des plus difficiles à résoudre. Nous examinons les variantes les plus connues du PAQ et développons une puissante métaheuristique itérative de recherche tabou mémétique en parallèle capable de les résoudre. La métaheuristique proposée s'avère être parmi les plus performantes pour le PAQ et surpasse considérablement l'état de l'art pour ses variantes. Les SRM permettent de repositionner facilement les pods d'inventaire pendant les opérations, ce qui peut conduire à un processus de prélèvement plus économe en énergie. Nous intégrons les décisions de repositionnement des pods à l'attribution des commandes et à la sélection des pods à l'aide d'une stratégie de prélèvement par vague. Les pods sont réorganisés en tenant compte du moment et de l'endroit où ils devraient être demandés au futur. Nous résolvons ce problème en utilisant la programmation stochastique en tenant compte de l'incertitude sur les demandes futures et suggérons une matheuristique de recherche locale pour résoudre des instances de taille réelle. Nous montrons que notre schéma d'approximation moyenne de l'échantillon est efficace pour simuler les demandes futures puisque nos méthodes améliorent les solutions trouvées lorsque les vagues sont planifiées sans tenir compte de l'avenir. Cette thèse est structurée comme suit. Après un chapitre d'introduction, nous présentons une revue de la littérature sur le système manuel et le SRM, et les décisions communes prises pour mettre en place leurs processus de stockage et de prélèvement. Les quatre chapitres suivants détaillent les études pour le problème de stockage et de routage intégré, le problème de dimensionnement des zones, le PAQ et le problème de repositionnement de pod. Nos conclusions sont résumées dans le dernier chapitre. / The rising of e-commerce is demanding an increase in the performance of warehousing systems, which are being redesigned to deal with a mass volume of demands to be fulfilled as fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are among the most commonly used for these activities. The former is a human-centered system that handles complex operations that current robots cannot perform. However, newer generations of autonomous robots are leading to a gradual replacement by the latter to increase productivity. Regardless of the system used, several interdependent problems have to be solved to have efficient storage and picking processes. Storage problems concern decisions on where to store products within the warehouse. Picking problems include the batching of orders to be fulfilled together and the routes the pickers and robots should follow to retrieve the products demanded. In the manual system, these problems are traditionally solved using simple policies that pickers can easily follow. Despite using robots, the same solution strategy is being replicated to the equivalent problems found in the RMFS. In this research, we investigate storage and picking problems faced when designing manual and RMFS warehouses. We develop optimization tools to help in the decision-making process to set up their processes and improve typical performance measures considered in these systems. Some classic problems are solved with improved techniques, while others are integrated to be solved together instead of optimizing each subsystem sequentially. We first consider a manual system with a known set of orders and integrate storage and routing decisions. The integrated problem and some variants considering common routing policies are modeled mathematically. A general variable neighborhood search metaheuristic is presented to deal with real-size instances. Computational experiments attest to the effectiveness of the metaheuristic proposed compared to the exact models and common storage policies. When future demands are uncertain, it is common to use a zoning strategy to divide the storage area into zones and assign the most-demanded products to the best zones. Zone sizes are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics of the warehouse and the demands. We approach the zone sizing problem to determine which factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations are used to train four machine learning regression models - ordinary least squares, regression tree, random forest, and multilayer perceptron - to predict the optimal zone sizes given the set of relevant factors identified. We show that all trained models suggest tailor-made zone sizes with better picking performance than the arbitrary ones commonly used. Another approach to solving storage problems, both in the manual and RMFS, considers the correlations between products. The idea is that products constantly demanded together should be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one of the hardest to solve. We survey the most traditional QAP variants and develop a powerful parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed metaheuristic is shown to be among the best performing ones for the QAP and significantly outperforms the state-of-the-art for its variants. The RMFS allows easy repositioning of inventory pods during operations that can lead to a more energy-efficient picking process. We integrate pod repositioning decisions with order assignment and pod selection using a wave picking strategy such that pods are parked after being requested considering when and where they are expected to be requested next. We solve this integrated problem using stochastic programming considering the uncertainty about future demands and suggest a local search matheuristic to solve real-size instances. We show that our sample average approximation scheme is effective to simulate future demands since our methods improve solutions found when waves are planned without considering the future demands. This thesis is structured as follows. After an introductory chapter, we present a literature review on the manual and RMFS, and common decisions made to set up their storage and picking processes. The next four chapters detail the studies for the integrated storage and routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our findings are summarized in the last chapter.
|
180 |
Prédiction de la variabilité spatiale de la disponibilité en biomasse résiduelle à l'aide de l'apprentissage automatiqueOuliz, Rhita 20 July 2024 (has links)
La biomasse forestière résiduelle correspond à la biomasse ligneuse laissée sur le parterre de la forêt après une coupe. Cette biomasse peut servir comme source d’énergie renouvelable, à un prix pouvant être, dans certaines conditions, compétitif relativement à d’autres sources d’énergie. Le succès de l’utilisation de ce type de biomasse tient en partie à une gestion efficace de son réseau d’approvisionnement. Ainsi, la gestion du risque de rupture d’approvisionnement de la biomasse forestière résiduelle est essentielle pour garantir le potentiel d’expansion d’un réseau de distribution aux clients. Le présent mémoire vise à améliorer la rentabilité d’approvisionnement de la biomasse forestière résiduelle par le biais d’une gestion efficace des sources d’erreur relatives à l’estimation de la disponibilité en biomasse. Il s’agit d’estimer la variabilité spatiale de la biomasse résiduelle avec une précision acceptable en optant pour les techniques de l’apprentissage automatique (en anglais, machine learning). L’apprentissage automatique est une tentative pour reproduire la notion d’apprentissage. Il s’agit de concevoir des algorithmes capables d’apprendre à partir des exemples ou des échantillons, afin de prédire les valeurs des cibles. Dans notre cas d’étude, la méthode KNN nous permettra d’estimer la quantité de la biomasse résiduelle des unités de surface cibles (polygones) à partir des k placettes-échantillons voisines. Pour ce faire, nous estimerons, dans un premier temps, la variabilité spatiale de la disponibilité en biomasse résiduelle en utilisant la méthode d’apprentissage automatique k-plus proches voisins (en anglais, k-nearest neighbors : KNN). Nous déterminerons ensuite l’erreur de notre estimation en utilisant la méthode bootstrap. Finalement, nous développerons une spatialisation de la quantité de biomasse forestière résiduelle en tenant compte de l’erreur d’estimation. Les résultats d’estimation obtenus, dans le cadre de cette recherche, indiquent une précision allant de 59,5 % à 71 % et centrée autour de 65,4 %. Notre méthodologie a permis ainsi d’obtenir des résultats pertinents comparativement à l’étude de Bernier et al. (2010) qui ont estimés le volume de biomasse forestière avec la méthode KNN et ont eu comme résultat une précision d’estimation égale à 19 %. L’utilisation de cette méthode pourra aussi être pertinente pour l’estimation de la biomasse forestière marchande et pour la prédiction de la biomasse forestière totale par essence d’arbres. / Residual forest biomass is the woody biomass left over on the forest floor after harvesting. This biomass can be used as a source of renewable energy, at a price that may be, under certain conditions, competitive relative to other energy sources. The success of the use of residual forest biomass depends in part on an effective management of its supply chain. Thus, the risk management of supply disruption of residual forest biomass is essential to ensure the potential for expansion of a customer’s distribution network. This project aims to improve the supply chain profitability of residual forest biomass through effective management of sources of error related to the estimation of the availability of biomass. This is the estimation of the spatial variability of residual biomass with acceptable accuracy by using machine learning techniques. Machine learning is an attempt to replicate the concept of learning. It consists to design algorithms capable to learn from examples or samples in order to predict the values of targets In our case study, the KNN method will allow us to estimate residual biomass of the target area units (polygons) from the k nearest neighbour plots. To this effect, we will estimate initially the spatial variability in the availability of residual biomass using the machine learning method KNN (k nearest neighbours). We then determine the error of our estimation using a bootstrap method. Finally, we will develop the location of the residual forest biomass quantity taking into account the estimation error. The estimation results obtained in the framework of this research indicate an accuracy of 59,5 % to 71 % centred around 65,4 % with an estimation error of 29 % to 34,5 %. Our methodology has yielded relevant results compared with the study of Bernier et al. (2010) which has had accuracy of estimation equal to 19% of forest biomass volume using the KNN method. The use of this method may also be relevant for estimating the commercial forest biomass and for the prediction of forest biomass of each tree species.
|
Page generated in 0.1134 seconds