• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards combining deep learning and statistical relational learning for reasoning on graphs

Qu, Meng 12 1900 (has links)
Cette thèse se focalise sur l'analyse de données structurées en graphes, un format de données répandu dans le monde réel. Le raisonnement dans ces données est un enjeu clé en apprentissage automatique, avec des applications allant de la classification de nœuds à la prédiction de liens. On distingue deux approches majeures pour le raisonnement dans les données en graphes : l'apprentissage relationnel statistique et l'apprentissage profond. L'apprentissage relationnel statistique construit des modèles graphiques probabilistes, efficaces pour capturer des dépendances complexes et intégrer des connaissances préexistantes, comme les règles logiques. Des méthodes notables incluent les réseaux logiques de Markov et les champs aléatoires conditionnels. L'apprentissage profond, quant à lui, se base sur l'apprentissage de représentations pertinentes des données observées pour une compréhension et un raisonnement rapides. Les réseaux neuronaux pour graphes (GNN) représentent un outil de pointe dans ce domaine. La combinaison de l'apprentissage relationnel statistique et de l'apprentissage profond offre une perspective enrichie sur le raisonnement, promettant un cadre plus robuste et efficace. Cette thèse explore cette combinaison, en développant des méthodes qui intègrent les deux approches. L'apprentissage profond renforce l'efficacité de l'apprentissage et de l'inférence dans l'apprentissage relationnel statistique, tandis que ce dernier affine les prédictions de l'apprentissage profond. Ce cadre intégré est appliqué à un éventail de tâches de raisonnement sur les graphes, démontrant son efficacité et ouvrant la voie à des recherches futures pour des cadres de raisonnement encore plus robustes. / This thesis centers on the analysis of graph-structured data, a ubiquitous data format in the real world. Reasoning within graph-structured data has long been a fundamental problem in machine learning, with applications spanning from node classification to link prediction. There are two principal approaches to tackle reasoning within graph-structured data: statistical relational learning and deep learning. Statistical relational learning techniques construct probabilistic graphical models based on observed data, excelling at capturing intricate dependencies of available evidence while accommodating prior knowledge, such as logic rules. Notable methods include Markov logic networks (MLNs) and conditional random fields (CRFs). In contrast, deep learning models harness the capability to learn meaningful representations from observed data, using these representations to rapidly comprehend and reason over the data. Graph neural networks (GNNs) have emerged as prominent tools in the realm of deep learning, achieving state-of-the-art results across a spectrum of tasks. Statistical relational learning and deep learning offer distinct perspectives on reasoning. Intuitively, combining these paradigms promises to create a more robust framework that inherits expressive power, efficiency, and the ability to model joint dependencies while simultaneously acquiring representations for more effective reasoning. In pursuit of this vision, this thesis explores the concept, developing methods that seamlessly integrate deep learning and statistical relational learning. Specifically, deep learning enhances the efficiency of learning and inference within statistical relational learning, while statistical relational learning, in turn, refines the predictions generated by deep learning to improve the accuracy. This integrated paradigm is applied across a diverse range of reasoning tasks on graphs. Empirical results demonstrate the effectiveness of this paradigm, encouraging further exploration to yield more robust reasoning frameworks.

Page generated in 0.196 seconds