Spelling suggestions: "subject:"approximate reasoning."" "subject:"approximate seasoning.""
1 |
Adding Threshold Concepts to the Description Logic ELFernández Gil, Oliver 14 June 2016 (has links) (PDF)
We introduce a family of logics extending the lightweight Description Logic EL, that allows us to define concepts in an approximate way. The main idea is to use a graded membership function m, which for each individual and concept yields a number in the interval [0,1] expressing the degree to which the individual belongs to the concept. Threshold concepts C~t for ~ in {<,<=,>,>=} then collect all the individuals that belong to C with degree ~t. We further study this framework in two particular directions. First, we define a specific graded membership function deg and investigate the complexity of reasoning in the resulting Description Logic tEL(deg) w.r.t. both the empty terminology and acyclic TBoxes. Second, we show how to turn concept similarity measures into membership degree functions. It turns out that under certain conditions such functions are well-defined, and therefore induce a wide range of threshold logics. Last, we present preliminary results on the computational complexity landscape of reasoning in such a big family of threshold logics.
|
2 |
Development of an optimal spatial decision-making system using approximate reasoningBailey, David Thomas January 2005 (has links)
There is a recognised need for the continued improvement of both the techniques and technology for spatial decision support in infrastructure site selection. Many authors have noted that current methodologies are inadequate for real-world site selection decisions carried out by heterogeneous groups of decision-makers under uncertainty. Nevertheless despite numerous limitations inherent in current spatial problem solving methods, spatial decision support systems have been proven to increase decision-maker effectiveness when used. However, due to the real or perceived difficulty of using these systems few applications are actually in use to support decision-makers in siting decisions. The most common difficulties encountered involve standardising criterion ratings, and communicating results. This research has focused on the use of Approximate Reasoning to improve the techniques and technology of spatial decision support, and make them easier to use and understand. The algorithm developed in this research (ARAISS) is based on the use of natural language to describe problem variables such as suitability, certainty, risk and consensus. The algorithm uses a method based on type II fuzzy sets to represent problem variables. ARAISS was subsequently incorporated into a new Spatial Decision Support System (InfraPlanner) and validated by use in a real-world site selection problem at Australia's Brisbane Airport. Results indicate that Approximate Reasoning is a promising method for spatial infrastructure planning decisions. Natural language inputs and outputs, combined with an easily understandable multiple decision-maker framework created an environment conducive to information sharing and consensus building among parties. Future research should focus on the use of Genetic Algorithms and other Artificial Intelligence techniques to broaden the scope of existing work.
|
3 |
Adding Threshold Concepts to the Description Logic ELFernández Gil, Oliver 18 May 2016 (has links)
We introduce a family of logics extending the lightweight Description Logic EL, that allows us to define concepts in an approximate way. The main idea is to use a graded membership function m, which for each individual and concept yields a number in the interval [0,1] expressing the degree to which the individual belongs to the concept. Threshold concepts C~t for ~ in {<,<=,>,>=} then collect all the individuals that belong to C with degree ~t. We further study this framework in two particular directions. First, we define a specific graded membership function deg and investigate the complexity of reasoning in the resulting Description Logic tEL(deg) w.r.t. both the empty terminology and acyclic TBoxes. Second, we show how to turn concept similarity measures into membership degree functions. It turns out that under certain conditions such functions are well-defined, and therefore induce a wide range of threshold logics. Last, we present preliminary results on the computational complexity landscape of reasoning in such a big family of threshold logics.
|
4 |
OWL query answering using machine learningHuster, Todd 21 December 2015 (has links)
No description available.
|
5 |
Semi-automated co-reference identification in digital humanities collectionsCroft, David January 2014 (has links)
Locating specific information within museum collections represents a significant challenge for collection users. Even when the collections and catalogues exist in a searchable digital format, formatting differences and the imprecise nature of the information to be searched mean that information can be recorded in a large number of different ways. This variation exists not just between different collections, but also within individual ones. This means that traditional information retrieval techniques are badly suited to the challenges of locating particular information in digital humanities collections and searching, therefore, takes an excessive amount of time and resources. This thesis focuses on a particular search problem, that of co-reference identification. This is the process of identifying when the same real world item is recorded in multiple digital locations. In this thesis, a real world example of a co-reference identification problem for digital humanities collections is identified and explored. In particular the time consuming nature of identifying co-referent records. In order to address the identified problem, this thesis presents a novel method for co-reference identification between digitised records in humanities collections. Whilst the specific focus of this thesis is co-reference identification, elements of the method described also have applications for general information retrieval. The new co-reference method uses elements from a broad range of areas including; query expansion, co-reference identification, short text semantic similarity and fuzzy logic. The new method was tested against real world collections information, the results of which suggest that, in terms of the quality of the co-referent matches found, the new co-reference identification method is at least as effective as a manual search. The number of co-referent matches found however, is higher using the new method. The approach presented here is capable of searching collections stored using differing metadata schemas. More significantly, the approach is capable of identifying potential co-reference matches despite the highly heterogeneous and syntax independent nature of the Gallery, Library Archive and Museum (GLAM) search space and the photo-history domain in particular. The most significant benefit of the new method is, however, that it requires comparatively little manual intervention. A co-reference search using it has, therefore, significantly lower person hour requirements than a manually conducted search. In addition to the overall co-reference identification method, this thesis also presents: • A novel and computationally lightweight short text semantic similarity metric. This new metric has a significantly higher throughput than the current prominent techniques but a negligible drop in accuracy. • A novel method for comparing photographic processes in the presence of variable terminology and inaccurate field information. This is the first computational approach to do so.
|
6 |
Modèle de performance agrégée et raisonnement approché pour l’optimisation de la consommation énergétique et du confort dans les bâtiments / Aggregate performance model and approximate reasoning for optimization of building energy consumption and occupant comfortDenguir, Afef 27 May 2014 (has links)
Ce travail s'inscrit dans le cadre du projet FUI RIDER (Research for IT Driven Energy efficiency) qui vise à développer un système de gestion de l'énergie faiblement dépendant du bâtiment à contrôler et propose une nouvelle approche pour réduire les coûts énergétiques. Cette approche exploite la notion de confort thermique afin de calculer de nouvelles consignes à fournir au système de contrôle du conditionnement du bâtiment. L'approche s'appuie sur l'idée que le confort thermique est une notion multidimensionnelle subjective. La littérature propose des modèles statistiques pour appréhender le confort thermique. Malheureusement, ces modèles sont fortement non linéaires et non interprétables ce qui rend difficile leur utilisation pour la conduite ou l'optimisation. Nous proposons un nouveau modèle de confort basé sur la théorie de l'utilité multi attributs et les intégrales de Choquet. L'intérêt d'un tel modèle est qu'il est interprétable en termes de préférences pour la conduite, linéaire par simplexe ce qui facilite la résolution des problèmes d'optimisation, et plus concis qu'un système de contrôle à base de règles. Dans la seconde partie de ce travail, le THermal Process Enhancement (THPE) s'intéresse à l'obtention efficiente des consignes calculées avec le modèle du confort thermique. Le THPE se base sur un raisonnement approché établi à partir d'un modèle qualitatif enrichi EQM (Extended Qualitative Model). L'EQM est le résultat de l'étude mathématique et qualitative des équations différentielles régissant les processus thermiques. Il est enrichi en continu par un système de gestion de l'expérience basé sur un apprentissage avec pénalités qui fournit les informations quantitatives nécessaires pour inférer des recommandations de conduite quantifiées à partir des tendances modélisées dans l'EQM. L'EQM et les raisonnements associés requièrent peu de paramètres et sont opérationnels même si la base d'apprentissage est initialement vide au lancement de RIDER. Le système de gestion de l'expérience permet simplement de quantifier les recommandations et de converger plus vite vers une commande optimale. Le raisonnement à base de modèles qui supporte notre approche est faiblement dépendant du processus thermique, pertinent dès le lancement de RIDER et se prête facilement au changement d'échelle de l'analyse thermique d'un bâtiment. Les performances de notre THPE, sa stabilité et son adaptation par rapport aux variations de l'environnement sont illustrées sur différents problèmes de contrôle et d'optimisation. Les commandes optimales sont généralement obtenues en quelques itérations et permettent d'avoir un contrôle adaptatif et individuel des pièces d'un bâtiment. / The present work is part of the FUI RIDER project (Research for IT Driven Energy efficiency). It aims to develop an energy management system that has to be weakly dependent on building's specificities in order to be easily deployed in different kinds of buildings. This work proposes a new approach based on the thermal comfort concept in order to reduce energy costs. This approach takes advantage of the thermal comfort concept in order to compute new optimized setpoints for the building energy control system. It relies on the idea that thermal comfort is a subjective multidimensional concept that can be used to reduce energy consumption. The literature provides statistical thermal comfort models but their complexity and non-linearity make them not useful for the control and optimization purposes. Our new thermal comfort model is based on the multi attributes utility theory and Choquet integrals. The advantages of our model are: its interpretability in term of preference relationships, its linearity in simplex regions which simplifies optimization problems' solving, and its compact form which is more tractable than a rule based control formalism. In the second part of this work, the THermal Process Enhancement (THPE) proposes a control system approach to efficiently reach the optimized setpoints provided by the comfort model. The THPE proposes an efficient and simple thermal control approach based on imprecise knowledge of buildings' special features. Its weak data-dependency ensures the scalability and simplicity of our approach. For this, an extended thermal qualitative model (EQM) is proposed. It is based on a qualitative description of influences that actions' parameters may have on buildings' thermal performances. This description results from the mathematical and qualitative analysis of dynamical thermal behaviors. Our thermal qualitative model is then enriched by online collecting and assessing previous thermal control performances. The online learning provides the necessary quantitative information to infer quantified control recommendations from the qualitative tendencies displayed by the EQM. Thus, an approximate reasoning based on the EQM and an online learning coupled with a penalty function provides smart thermal control functionalities. The EQM based approximate reasoning guarantees our control system weak dependency with regard to the building special features as well as its multi-scale applicability and its relevancy even for RIDER's first start when the learning database lacks of information. The performances of our THPE are assessed on various types of control and optimization issues. An optimal control is generally achieved in a few iterations which allows providing an adaptive and individual control of building's rooms.
|
7 |
Planejamento probabilístico usando programação dinâmica assíncrona e fatorada / Probabilistic planning using asynchronous and factored dynamic programming.Holguin, Mijail Gamarra 03 April 2013 (has links)
Processos de Decisão Markovianos (Markov Decision Process - MDP) modelam problemas de tomada de decisão sequencial em que as possíveis ações de um agente possuem efeitos probabilísticos sobre os estados sucessores (que podem ser definidas por matrizes de transição de estados). Programação dinâmica em tempo real (Real-time dynamic programming - RTDP), é uma técnica usada para resolver MDPs quando existe informação sobre o estado inicial. Abordagens tradicionais apresentam melhor desempenho em problemas com matrizes esparsas de transição de estados porque podem alcançar eficientemente a convergência para a política ótima, sem ter que visitar todos os estados. Porém essa vantagem pode ser perdida em problemas com matrizes densas de transição, nos quais muitos estados podem ser alcançados em um passo (por exemplo, problemas de controle com eventos exógenos). Uma abordagem para superar essa limitação é explorar regularidades existentes na dinâmica do domínio através de uma representação fatorada, isto é, uma representação baseada em variáveis de estado. Nesse trabalho de mestrado, propomos um novo algoritmo chamado de FactRTDP (RTDP Fatorado), e sua versão aproximada aFactRTDP (RTDP Fatorado e Aproximado), que é a primeira versão eficiente fatorada do algoritmo clássico RTDP. Também propomos outras 2 extensões desses algoritmos, o FactLRTDP e aFactLRTDP, que rotulam estados cuja função valor convergiu para o ótimo. Os resultados experimentais mostram que estes novos algoritmos convergem mais rapidamente quando executados em domínios com matrizes de transição densa e tem bom comportamento online em domínios com matrizes de transição densa com pouca dependência entre as variáveis de estado. / Markov Decision Process (MDP) model problems of sequential decision making, where the possible actions have probabilistic effects on the successor states (defined by state transition matrices). Real-time dynamic programming (RTDP), is a technique for solving MDPs when there exists information about the initial state. Traditional approaches show better performance in problems with sparse state transition matrices, because they can achieve the convergence to optimal policy efficiently, without visiting all states. But, this advantage can be lose in problems with dense state transition matrices, in which several states can be achieved in a step (for example, control problems with exogenous events). An approach to overcome this limitation is to explore regularities existing in the domain dynamics through a factored representation, i.e., a representation based on state variables. In this master thesis, we propose a new algorithm called FactRTDP (Factored RTDP), and its approximate version aFactRTDP (Approximate and Factored RTDP), that are the first factored efficient versions of the classical RTDP algorithm. We also propose two other extensions, FactLRTDP and aFactLRTDP, that label states for which the value function has converged to the optimal. The experimental results show that when these new algorithms are executed in domains with dense transition matrices, they converge faster. And they have a good online performance in domains with dense transition matrices and few dependencies among state variables.
|
8 |
Représentation et traitement des connaissances en logique multivalente : cas d'une répartition non uniforme des degrés de vérité / Representation and management of imperfect knowledge in multivalued logic : Case of unbalanced truth degreesChaoued, Nouha 30 November 2017 (has links)
Dans la plupart des activités quotidiennes, l’Homme a tendance à utiliser des connaissances imparfaites. L’imperfection se rapporte à trois volets : l’imprécision, l’incertitude et l’incomplétude. Nous thèse concerne les connaissances imprécises. En particulier, nous nous intéressons au traitement qualitatif de l’information imprécise dans les systèmes à base de connaissances. Diverses approches ont été proposées pour traiter les connaissances imprécises, en particulier, la logique floue et la logique multivalente. Les théories des ensembles flous et des multi-ensembles sont un moyen très approprié pour la représentation et la modélisation de l’imprécision.Notre travail s’inscrit dans le contexte de la logique multivalente. Celle-ci permet de représenter symboliquement des connaissances imprécises en utilisant des expressions adverbiales ordonnées du langage naturel. L’utilisation de ces degrés symboliques est plus compréhensible par les experts. Ce type de représentation de données est indépendant du type de leurs domaines de discours. Ainsi, la manipulation des connaissances abstraites ou faisant référence à des échelles numériques se fait de la même manière.Dans la littérature, le traitement de l’information imprécise repose sur une hypothèse implicite de la répartition uniforme des degrés de vérité sur une échelle de 0 à 1. Néanmoins, dans certains cas, un sous-domaine de cette échelle peut être plus informatif et peut inclure plus de termes. Dans ce cas, l’information est définie par des termes déséquilibrés, c’est-à-dire qui ne sont pas uniformément répartis et/ou symétriques par rapport à un terme milieu. Par exemple, pour l’évaluation des apprenants, il est possible de considérer un seul terme négatif F correspondant à l’échec. Quant à la réussite, elle est décrite par plusieurs valeurs de mention, i.e. D, C, B et A. Ainsi, si le terme D est le seuil de la réussite, il est considéré comme le terme milieu avec un seul terme à sa gauche et trois à sa droite. Il s’agit alors d’un ensemble non uniforme.Dans ce travail, nous nous concentrons sur l'extension de la logique multivalente au cas des ensembles non uniformes. En s'appuyant sur notre étude de l'art, nous proposons de nouvelles approches pour représenter et traiter ces ensembles de termes. Tout d'abord, nous introduisons des algorithmes qui permettent de représenter des termes non uniformes à l'aide de termes uniformes et inversement. Ensuite, nous décrivons une méthode pour utiliser des modificateurs linguistiques initialement définis pour les termes uniformes avec des ensembles de termes non uniformes. Par la suite, nous présentons une approche de raisonnement basée sur le modèle du Modus Ponens Généralisé à l'aide des Modificateurs Symboliques Généralisés. Les modèles proposés sont mis en œuvre dans un nouveau système de décision fondé sur des règles pour la reconnaissance de l'odeur de camphre. Nous développons également un outil pour le diagnostic de l'autisme infantile. Les degrés de sévérité de l'atteinte par ce trouble autistique sont représentés par l'échelle d'évaluation de l'autisme infantile (CARS). Il s'agit d'une échelle non uniforme. / In most daily activities, humans use imprecise information derived from appreciation instead of exact measurements to make decisions. Various approaches were proposed to deal with imperfect knowledge, in particular, fuzzy logic and multi-valued logic. In this work, we treat the particular case of imprecise knowledge.Taking into account imprecise knowledge by computer systems is based on their representation by means of linguistic variables. Their values form a set of words expressing the different nuances of the treated information. For example, to judge the beauty of the Mona Lisa or the smell of a flower, it is not possible to give an exact value but an appreciation is given by a term like "beautiful" or "floral".In the literature, dealing with imprecise information relies on an implicit assumption: the distribution of terms is uniform on a scale ranging from 0 to 1. Nevertheless, in some cases, a sub-domain of this scale may be more informative and may include more terms. In this case, knowledge are represented by means of an unbalanced terms set, that is, not uniformly nor symmetrically distributed.We have noticed, in the literature, that in the context of fuzzy logic many researchers have dealt with these term sets. However, it is not the case for multi-valued logic. Thereby, in our work, we aim to establish a methodology to represent and manage this kind of data in the context of multi-valued logic. Two aspects are treated. The first one concerns the representation of terms within an unbalanced multi-set. The second deals with the treatment of such kind of imprecise knowledge, i.e. with symbolic modifiers and in reasoning process.In this work, we focus on unbalanced sets in the context of multi-valued logic. Basing on our study of art, we propose new approaches to represent and treat such term sets. First of all, we introduce algorithms that allow representing unbalanced terms within uniform ones and the inverse way. Then, we describe a method to use linguistic modifiers within unbalanced multi-sets. Afterward, we present a reasoning approach based on the Generalized Modus Ponens model using Generalized Symbolic Modifiers. The proposed models are implemented in a novel rule-based decision system for the camphor odor recognition within unbalanced multi-set. We also develop a tool for child autism diagnosis by means of unbalanced severity degrees of the Childhood Autism Rating Scale (CARS).
|
9 |
Planejamento probabilístico usando programação dinâmica assíncrona e fatorada / Probabilistic planning using asynchronous and factored dynamic programming.Mijail Gamarra Holguin 03 April 2013 (has links)
Processos de Decisão Markovianos (Markov Decision Process - MDP) modelam problemas de tomada de decisão sequencial em que as possíveis ações de um agente possuem efeitos probabilísticos sobre os estados sucessores (que podem ser definidas por matrizes de transição de estados). Programação dinâmica em tempo real (Real-time dynamic programming - RTDP), é uma técnica usada para resolver MDPs quando existe informação sobre o estado inicial. Abordagens tradicionais apresentam melhor desempenho em problemas com matrizes esparsas de transição de estados porque podem alcançar eficientemente a convergência para a política ótima, sem ter que visitar todos os estados. Porém essa vantagem pode ser perdida em problemas com matrizes densas de transição, nos quais muitos estados podem ser alcançados em um passo (por exemplo, problemas de controle com eventos exógenos). Uma abordagem para superar essa limitação é explorar regularidades existentes na dinâmica do domínio através de uma representação fatorada, isto é, uma representação baseada em variáveis de estado. Nesse trabalho de mestrado, propomos um novo algoritmo chamado de FactRTDP (RTDP Fatorado), e sua versão aproximada aFactRTDP (RTDP Fatorado e Aproximado), que é a primeira versão eficiente fatorada do algoritmo clássico RTDP. Também propomos outras 2 extensões desses algoritmos, o FactLRTDP e aFactLRTDP, que rotulam estados cuja função valor convergiu para o ótimo. Os resultados experimentais mostram que estes novos algoritmos convergem mais rapidamente quando executados em domínios com matrizes de transição densa e tem bom comportamento online em domínios com matrizes de transição densa com pouca dependência entre as variáveis de estado. / Markov Decision Process (MDP) model problems of sequential decision making, where the possible actions have probabilistic effects on the successor states (defined by state transition matrices). Real-time dynamic programming (RTDP), is a technique for solving MDPs when there exists information about the initial state. Traditional approaches show better performance in problems with sparse state transition matrices, because they can achieve the convergence to optimal policy efficiently, without visiting all states. But, this advantage can be lose in problems with dense state transition matrices, in which several states can be achieved in a step (for example, control problems with exogenous events). An approach to overcome this limitation is to explore regularities existing in the domain dynamics through a factored representation, i.e., a representation based on state variables. In this master thesis, we propose a new algorithm called FactRTDP (Factored RTDP), and its approximate version aFactRTDP (Approximate and Factored RTDP), that are the first factored efficient versions of the classical RTDP algorithm. We also propose two other extensions, FactLRTDP and aFactLRTDP, that label states for which the value function has converged to the optimal. The experimental results show that when these new algorithms are executed in domains with dense transition matrices, they converge faster. And they have a good online performance in domains with dense transition matrices and few dependencies among state variables.
|
Page generated in 0.0875 seconds