• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpretable Approximation of High-Dimensional Data based on the ANOVA Decomposition

Schmischke, Michael 08 July 2022 (has links)
The thesis is dedicated to the approximation of high-dimensional functions from scattered data nodes. Many methods in this area lack the property of interpretability in the context of explainable artificial intelligence. The idea is to address this shortcoming by proposing a new method that is intrinsically designed around interpretability. The multivariate analysis of variance (ANOVA) decomposition is the main tool to achieve this purpose. We study the connection between the ANOVA decomposition and orthonormal bases to obtain a powerful basis representation. Moreover, we focus on functions that are mostly explained by low-order interactions to circumvent the curse of dimensionality in its exponential form. Through the connection with grouped index sets, we can propose a least-squares approximation idea via iterative LSQR. Here, the proposed grouped transformations provide fast algorithms for multiplication with the appearing matrices. Through global sensitivity indices we are then able to analyze the approximation which can be used in improving it further. The method is also well-suited for the approximation of real data sets where the sparsity-of-effects principle ensures a low-dimensional structure. We demonstrate the applicability of the method in multiple numerical experiments with real and synthetic data.:1 Introduction 2 The Classical ANOVA Decomposition 3 Fast Multiplication with Grouped Transformations 4 High-Dimensional Explainable ANOVA Approximation 5 Numerical Experiments with Synthetic Data 6 Numerical Experiments with Real Data 7 Conclusion Bibliography / Die Arbeit widmet sich der Approximation von hoch-dimensionalen Funktionen aus verstreuten Datenpunkten. In diesem Bereich leiden vielen Methoden darunter, dass sie nicht interpretierbar sind, was insbesondere im Kontext von Explainable Artificial Intelligence von großer Wichtigkeit ist. Um dieses Problem zu adressieren, schlagen wir eine neue Methode vor, die um das Konzept von Interpretierbarkeit entwickelt ist. Unser wichtigstes Werkzeug dazu ist die Analysis of Variance (ANOVA) Zerlegung. Wir betrachten insbesondere die Verbindung der ANOVA Zerlegung zu orthonormalen Basen und erhalten eine wichtige Reihendarstellung. Zusätzlich fokussieren wir uns auf Funktionen, die hauptsächlich durch niedrig-dimensionale Variableninteraktionen erklärt werden. Dies hilft uns, den Fluch der Dimensionen in seiner exponentiellen Form zu überwinden. Über die Verbindung zu Grouped Index Sets schlagen wir dann eine kleinste Quadrate Approximation mit dem iterativen LSQR Algorithmus vor. Dabei liefern die vorgeschlagenen Grouped Transformations eine schnelle Multiplikation mit den entsprechenden Matrizen. Unter Zuhilfenahme von globalen Sensitvitätsindizes können wir die Approximation analysieren und weiter verbessern. Die Methode ist zudem gut dafür geeignet, reale Datensätze zu approximieren, wobei das sparsity-of-effects Prinzip sicherstellt, dass wir mit niedrigdimensionalen Strukturen arbeiten. Wir demonstrieren die Anwendbarkeit der Methode in verschiedenen numerischen Experimenten mit realen und synthetischen Daten.:1 Introduction 2 The Classical ANOVA Decomposition 3 Fast Multiplication with Grouped Transformations 4 High-Dimensional Explainable ANOVA Approximation 5 Numerical Experiments with Synthetic Data 6 Numerical Experiments with Real Data 7 Conclusion Bibliography
2

Estimation of Curvature and Torsion of Discrete Mammalian Cell Paths through Porous Media / Estimation des courbures et torsions des trajectoires discrètes de cellules mammaliennes à travers des milieux poreux

Blankenburg, Christoph 11 April 2017 (has links)
L’extraction des cellules cancéreuses d’un fluide corporel est une procédure importante lors d’un diagnostic clinique et d’une thérapie. En particulier, lorsque la technique de séparation est basée sur la chromatographie cellulaire, il est important de disposer de connaissances précises sur les capacités de liaison des cellules cibles avec le milieu poreux. Pour cette raison, des expériences utilisant la tomodensitométrie à résolution temporelle ont été́ conçues et réalisées à l’Installation Européenne de Rayonnement Synchrotron. Les distributions des courbures et des torsions des trajectoires de cellules situées dans suspension s’écoulant à travers un milieu poreux sont des informations précieuses pour caractériser l’efficacité́ des procédés chromatographiques. Cependant, le calcul de la torsion est un défi car étant basé sur des dérivées d’ordre supérieur qui sont très sensibles au bruit de discrétisation. Cette thèse présente deux nouvelles méthodes d’estimation des courbures et des torsions de trajectoires de particules données respectivement sous la forme de points discrets connectes ou non connectes. La première méthode est basée sur une approche dite d’approximation de Fourier. Des études de cas ont mis en lumière une diminution de l’erreur d’estimation des torsions d’au moins 65% par rapport à la méthode de référence d’approximation par les splines. Par ailleurs, le paramètre de lissage de l’approximation de Fourier peut rester constant pour une large plage de résolutions latérales et pour différentes valeurs de courbures et de torsion. La méthode dite d’approximation de Fourier n’étant pas applicable à des courbes échantillonnées avec un pas variable, une deuxième méthode basée sur la discrétisation des formules géométriques différentielles (DDGF) a été́ développée. L’approximation par les splines et la DDGF conduisent à des erreurs moyennes similaires. Cependant, le masque filtrant reste inchangé́ pour le DDGF, alors que le paramètre de lissage de l’approximation par les splines doit être adapté à la forme ainsi qu’au pas d’échantillonnage de la courbe / The extraction of cancerous cells from body uids is an important procedure in clinical diagnostics and therapy. Notably, when the separation technique is based on cell chromatography, it is important to have precise knowledge about binding capacities of target cells in porous media. Therefore, experiments using time-resolved micro-computed tomography were designed and carried out at the European Synchrotron Radiation Facility. The curvature and torsion distributions of cell paths in a two-phase ow through a porous medium are valuable information to characterize the efficiency of chromatographic processes. However, the computation of torsion is very challenging, since it is based on higher order derivatives which are very sensitive towards discretization noise. In this thesis, two new curvature and torsion estimation methods of particle paths are presented. The first method is based on a Fourier approximation. Case studies showed a decrease of the torsion estimation error of at least 65% compared to the commonly used spline approximation. Moreover, the smoothing parameter of the Fourier approximation can remain unchanged for both a wide range of lateral resolutions and curvatures and torsion values. Since this Fourier approximation approach cannot be applied at non-equidistant points, a second method based on the discretization of the differential-geometric formulas (DDGF) was developed. The spline approximation and the DDGF led to similar mean torsion errors. However, the filter mask remains unchanged for the DDGF, whereas the smoothing parameter of the spline approximation must be adapted to the curve shape and discretization
3

Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling

Volkmer, Toni 28 March 2017 (has links)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed. One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions. A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt. Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen. Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.

Page generated in 0.1149 seconds