• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 11
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Konstruktive und generische Gewinnung universeller Funktionen

Mayenberger, Daniel January 2005 (has links)
Zugl.: Trier, Univ., Diss., 2005 / Hergestellt on demand
2

Complexity penalized segmentations in 2D efficient algorithms and approximation properties /

Friedrich, Felix. Unknown Date (has links)
Techn. University, Diss., 2005--München.
3

Zur Konvergenz der Randpunktmethode

König, Sergej. Unknown Date (has links) (PDF)
Kassel, Universiẗat, Diss., 2008.
4

Scattered data approximation on the rotation group and generalizations /

Schmid, Dominik. January 2009 (has links)
München, Techn. University, Diss., 2009.
5

Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen / Penalized least squares methods with piecewise polynomial functions for solving partial differential equations

Pechmann, Patrick R. January 2008 (has links) (PDF)
Das Hauptgebiet der Arbeit stellt die Approximation der Lösungen partieller Differentialgleichungen mit Dirichlet-Randbedingungen durch Splinefunktionen dar. Partielle Differentialgleichungen finden ihre Anwendung beispielsweise in Bereichen der Elektrostatik, der Elastizitätstheorie, der Strömungslehre sowie bei der Untersuchung der Ausbreitung von Wärme und Schall. Manche Approximationsaufgaben besitzen keine eindeutige Lösung. Durch Anwendung der Penalized Least Squares Methode wurde gezeigt, dass die Eindeutigkeit der gesuchten Lösung von gewissen Minimierungsaufgaben sichergestellt werden kann. Unter Umständen lässt sich sogar eine höhere Stabilität des numerischen Verfahrens gewinnen. Für die numerischen Betrachtungen wurde ein umfangreiches, effizientes C-Programm erstellt, welches die Grundlage zur Bestätigung der theoretischen Voraussagen mit den praktischen Anwendungen bildete. / This work focuses on approximating solutions of partial differential equations with Dirichlet boundary conditions by means of spline functions. The application of partial differential equations concerns the fields of electrostatics, elasticity, fluid flow as well as the analysis of the propagation of heat and sound. Some approximation problems do not have a unique solution. By applying the penalized least squares method it has been shown that uniqueness of the solution of a certain class of minimizing problems can be guaranteed. In some cases it is even possible to reach higher stability of the numerical method. For the numerical analysis we have developed an extensive and efficient C code. It serves as the basis to confirm theoretical predictions with practical applications.
6

Penalized Least Squares Methoden mit stückweise polynomialen Funktionen zur Lösung von partiellen Differentialgleichungen

Pechmann, Patrick R. January 2008 (has links)
Würzburg, Univ., Diss., 2008
7

Semiclassical approximations for single eigenstates of quantum maps / Semiklassische Näherungen für einzelne Eigenzustände von Quantenabbildungen

Sczyrba, Martin 23 March 2003 (has links) (PDF)
In der vorliegenden Arbeit wird die Fredholm-Methode zur semiklassischen Berechnung einzelner Eigenzustaende von Quantenabbildungen eingesetzt. Es wird gezeigt, wie auch Eigenzustaende zu entarteten Eigenwerten berechnet werden koennen. Die semiklassische Berechnung eines Eigenzustandes erfolgt mittels der Husimifunktion. Es wird gezeigt, wie das Auftreten von Bifurkationen periodischer Bahnen beruecksichtigt werden kann. Dies geschieht auch fuer den Fall von energiegemittelten Eigenzustaenden. Ebenfalls wird die Stoerung einer Quantenabbildung durch einen Punktstreuer und dessen Auswirkungen auf die semiklassische Berechnungen untersucht.
8

Efficient multivariate approximation with transformed rank-1 lattices

Nasdala, Robert 17 May 2022 (has links)
We study the approximation of functions defined on different domains by trigonometric and transformed trigonometric functions. We investigate which of the many results known from the approximation theory on the d-dimensional torus can be transfered to other domains. We define invertible parameterized transformations and prove conditions under which functions from a weighted Sobolev space can be transformed into functions defined on the torus, that still have a certain degree of Sobolev smoothness and for which we know worst-case upper error bounds. By reverting the initial change of variables we transfer the fast algorithms based on rank-1 lattices used to approximate functions on the torus efficiently over to other domains and obtain adapted FFT algorithms.:1 Introduction 2 Preliminaries and notations 3 Fourier approximation on the torus 4 Torus-to-R d transformation mappings 5 Torus-to-cube transformation mappings 6 Conclusion Alphabetical Index / Wir betrachten die Approximation von Funktionen, die auf verschiedenen Gebieten definiert sind, mittels trigonometrischer und transformierter trigonometrischer Funktionen. Wir untersuchen, welche bisherigen Ergebnisse für die Approximation von Funktionen, die auf einem d-dimensionalen Torus definiert wurden, auf andere Definitionsgebiete übertragen werden können. Dazu definieren wir parametrisierte Transformationsabbildungen und beweisen Bedingungen, bei denen Funktionen aus einem gewichteten Sobolevraum in Funktionen, die auf dem Torus definiert sind, transformiert werden können, die dabei einen gewissen Grad an Sobolevglattheit behalten und für die obere Schranken der Approximationsfehler bewiesen wurden. Durch Umkehrung der ursprünglichen Koordinatentransformation übertragen wir die schnellen Algorithmen, die Rang-1 Gitter Methoden verwenden um Funktionen auf dem Torus effizient zu approximieren, auf andere Definitionsgebiete und erhalten adaptierte FFT Algorithmen.:1 Introduction 2 Preliminaries and notations 3 Fourier approximation on the torus 4 Torus-to-R d transformation mappings 5 Torus-to-cube transformation mappings 6 Conclusion Alphabetical Index
9

Best constants in Markov-type inequalities with mixed weights / Kleinste Konstanten in Markovungleichungen mit unterschiedlichen Gewichten

Langenau, Holger 19 April 2016 (has links) (PDF)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.
10

Best constants in Markov-type inequalities with mixed weights

Langenau, Holger 18 March 2016 (has links)
Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given. / Markovungleichungen liefern obere Schranken an die Norm einer (höheren) Ableitung eines algebraischen Polynoms in Bezug auf die Norm des Polynoms selbst. Diese vorliegende Arbeit betrachtet den Fall, dass die Normen vom Laguerre-, Gegenbauer- oder Hermitetyp sind, wobei die entsprechenden Gewichte auf beiden Seiten unterschiedlich gewählt werden. Es wird die kleinste Konstante bestimmt, sodass diese Ungleichung für jedes Polynom vom Grad höchstens n erfüllt ist. Die gesuchte kleinste Konstante kann als die Operatornorm des Differentialoperators dargestellt werden. Diese fällt aber mit der Spektralnorm der Matrixdarstellung in einem Paar geeignet gewählter Orthonormalbasen zusammen und kann daher gut behandelt werden. Zur Abschätzung dieser Normen kommen verschiedene Methoden zum Einsatz, die durch die Differenz der in den Gewichten auftretenden Parameter bestimmt werden. Bis auch eine kleine Lücke im Parameterbereich wird das asymptotische Verhalten der kleinsten Konstanten in jedem der betrachteten Fälle ermittelt.

Page generated in 0.1006 seconds