• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 9
  • 5
  • 4
  • Tagged with
  • 121
  • 121
  • 63
  • 61
  • 27
  • 24
  • 24
  • 23
  • 22
  • 20
  • 19
  • 18
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Classificação de tráfego baseado em mineração de fluxos de dados

Lopes Junior, Petrônio Gomes 31 January 2012 (has links)
Made available in DSpace on 2014-06-12T16:01:31Z (GMT). No. of bitstreams: 2 arquivo9422_1.pdf: 1276132 bytes, checksum: 3774a722066d704630a96e348e110df1 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2012 / Faculdade de Amparo à Ciência e Tecnologia do Estado de Pernambuco / Existem diversos tipos de aplicações de redes de computadores que produzem diferentes perfis de tráfego. Para aperfeiçoar o desempenho destas aplicações ou da rede em que elas estão incluídas, é interessante fazer medições e caracterizações do tráfego gerado por elas. Nesse contexto, existem várias formas para classificação de tráfego como técnicas baseadas em portas, técnicas baseadas em inspeção de pacotes e técnicas baseadas em fluxos. De acordo com o cenário em que será aplicada, cada uma das técnicas apresenta vantagens e desvantagens. Adicionalmente, a classificação tem que lidar com restrições de tempo, sendo capaz de tratar os dados em tempo real. Um possível método a ser utilizado é a classificação de tráfego baseada em fluxos utilizando aprendizagem de máquina. No entanto, é notório que, quando se fala na classificação de fluxos usando aprendizagem de máquina, a caracterização de tráfego ainda necessita de uma abordagem que seja capaz de fornecer uma forma adaptativa de treinamento além de equilibrar precisão e desempenho em um cenário de fluxo contínuo de dados. Este trabalho apresenta um algoritmo voltado para classificação do tráfego baseado em técnicas de mineração de fluxos de dados aplicado a redes de alta velocidade, denominado GSDT (GPU-based Streaming Decision Tree), além de um arcabouço para sua aplicação. Esse algoritmo visa combinar a precisão das árvores de decisão tradicionais com as características da mineração de fluxos de dados. O GSDT também explora o potencial computacional fornecido por uma unidade de processamento gráfico. O arcabouço proposto alia treinamento e classificação, a fim de obter ganhos no desempenho da utilização do algoritmo em um ambiente real. Os experimentos realizados avaliam a precisão do GSDT em relação às técnicas tradicionais e o desempenho das abordagens propostas, demonstrando a viabilidade da aplicação do GSDT nos cenários considerados e a alta performance obtida através da unidade de processamento gráfico
32

Handling Concept Drift Based on Data Similarity and Dynamic Classifier Selection

Pinagé, Felipe Azevedo, 92-98187-1016 28 July 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-10-16T18:53:44Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese - Felipe A. Pinagé.pdf: 1786179 bytes, checksum: 25c2a867ba549f75fe4adf778d3f3ad0 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-10-16T18:54:52Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese - Felipe A. Pinagé.pdf: 1786179 bytes, checksum: 25c2a867ba549f75fe4adf778d3f3ad0 (MD5) / Made available in DSpace on 2017-10-16T18:54:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese - Felipe A. Pinagé.pdf: 1786179 bytes, checksum: 25c2a867ba549f75fe4adf778d3f3ad0 (MD5) Previous issue date: 2017-07-28 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / In real-world applications, machine learning algorithms can be employed to perform spam detection, environmental monitoring, fraud detection, web click stream, among others. Most of these problems present an environment that changes over time due to the dynamic generation process of the data and/or due to streaming data. The problem involving classification tasks of continuous data streams has become one of the major challenges of the machine learning domain in the last decades because, since data is not known in advance, it must be learned as it becomes available. In addition, fast predictions about data should be performed to support often real time decisions. Currently in the literature, methods based on accuracy monitoring are commonly used to detect changes explicitly. However, these methods may become infeasible in some real-world applications especially due to two aspects: they may need human operator feedback, and may depend on a significant decrease of accuracy to be able to detect changes. In addition, most of these methods are also incremental learning-based, since they update the decision model for every incoming example. However, this may lead the system to unnecessary updates. In order to overcome these problems, in this thesis, two semi-supervised methods based on estimating and monitoring a pseudo error are proposed to detect changes explicitly. The decision model is updated only after changing detection. In the first method, the pseudo error is calculated using similarity measures by monitoring the dissimilarity between past and current data distributions. The second proposed method employs dynamic classifier selection in order to improve the pseudo error measurement. As a consequence, this second method allows classifier ensemble online self-training. The experiments conducted show that the proposed methods achieve competitive results, even when compared to fully supervised incremental learning methods. The achievement of these methods, especially the second method, is relevant since they lead change detection and reaction to be applicable in several practical problems reaching high accuracy rates, where usually is not possible to generate the true labels of the instances fully and immediately after classification. / Em aplicações do mundo real, algoritmos de aprendizagem de máquina podem ser usados para detecção de spam, monitoramento ambiental, detecção de fraude, fluxo de cliques na Web, dentre outros. A maioria desses problemas apresenta ambientes que sofrem mudanças com o passar do tempo, devido à natureza dinâmica de geração dos dados e/ou porque envolvem dados que ocorrem em fluxo. O problema envolvendo tarefas de classificação em fluxo contínuo de dados tem se tornado um dos maiores desafios na área de aprendizagem de máquina nas últimas décadas, pois, como os dados não são conhecidos de antemão, eles devem ser aprendidos à medida que são processados. Além disso, devem ser feitas previsões rápidas a respeito desses dados para dar suporte à decisões muitas vezes tomadas em tempo real. Atualmente, métodos baseados em monitoramento da acurácia de classificação são geralmente usados para detectar explicitamente mudanças nos dados. Entretanto, esses métodos podem tornar-se inviáveis em aplicações práticas, especialmente devido a dois aspectos: a necessidade de uma realimentação do sistema por um operador humano, e a dependência de uma queda significativa da acurácia para que mudanças sejam detectadas. Além disso, a maioria desses métodos é baseada em aprendizagem incremental, onde modelos de predição são atualizados para cada instância de entrada, fato que pode levar a atualizações desnecessárias do sistema. A fim de tentar superar todos esses problemas, nesta tese são propostos dois métodos semi-supervisionados de detecção explícita de mudanças em dados, os quais baseiam-se na estimação e monitoramento de uma métrica de pseudo-erro. O modelo de decisão é atualizado somente após a detecção de uma mudança. No primeiro método proposto, o pseudo-erro é monitorado a partir de métricas de similaridade calculadas entre a distribuição atual e distribuições anteriores dos dados. O segundo método proposto utiliza seleção dinâmica de classificadores para aumentar a precisão do cálculo do pseudo-erro. Como consequência, nosso método possibilita que conjuntos de classificadores online sejam criados a partir de auto-treinamento. Os experimentos apresentaram resultados competitivos quando comparados inclusive com métodos baseados em aprendizagem incremental totalmente supervisionada. A proposta desses dois métodos, especialmente do segundo, é relevante por permitir que tarefas de detecção e reação a mudanças sejam aplicáveis em diversos problemas práticos alcançando altas taxas de acurácia, dado que, na maioria dos problemas práticos, não é possível obter o rótulo de uma instância imediatamente após sua classificação feita pelo sistema.
33

Extração de informação de artigos científicos: uma abordagem baseada em indução de regras de etiquetagem / Information extraction from scientific articles: an approach based on induction of tagging rules

Álvarez, Alberto Cáceres 08 May 2007 (has links)
Este trabalho faz parte do projeto de uma ferramenta denominada FIP (Ferramenta Inteligente de Apoio à Pesquisa) para recuperação, organização e mineração de grandes coleções de documentos. No contexto da ferramenta FIP, diversas técnicas de Recuperação de Informação, Mineração de Dados, Visualização de Informações e, em particular, técnicas de Extração de Informações, foco deste trabalho, são usadas. Sistemas de Extração de Informação atuam sobre um conjunto de dados não estruturados e objetivam localizar informações específicas em um documento ou coleção de documentos, extraí-las e estruturá-las com o intuito de facilitar o uso dessas informações. O objetivo específico desenvolvido nesta dissertação é induzir, de forma automática, um conjunto de regras para a extração de informações de artigos científicos. O sistema de extração proposto, inicialmente, analisa e extrai informações presentes no corpo dos artigos (título, autores, a filiação, resumo, palavras chaves) e, posteriormente, foca na extração das informações de suas referências bibliográficas. A proposta para extração automática das informações das referências é uma abordagem nova, baseada no mapeamento do problema de part-of-speech tagging ao problema de extração de informação. Como produto final do processo de extração, tem-se uma base de dados com as informações extraídas e estruturadas no formato XML, disponível à ferramenta FIP ou a qualquer outra aplicação. Os resultados obtidos foram avaliados em termos das métricas precisão, cobertura e F-measure, alcançando bons resultados comparados com sistemas similares / This dissertation is part of a project of a tool named FIP (an Intelligent Tool for Research Supporting). FIP is a tool for retrieval, organization, and mining large document collections. In the context of FIP diverse techniques from Information Retrieval, Data Mining, Information Visualization, and particularly Information Extraction, focus of this work, are used. Information Extraction systems deal with unstructured data looking for specific information in a document or document collection, extracting and structuring them in order to facilitate their use. The specific objective presented in this dissertation is automatically to induce a set of rules for information extraction from scientific articles. The proposed extraction system initially analyzes and extracts information from the body of the articles (heading, authors, affiliation, abstract, and keywords) and then extracts information from each reference in its bibliographical references. The proposed approach for information extraction from references is a new technique based on the strategy of part-of-speech tagging. As the outcome of the extraction process, a database with extracted and structured information in XML format is made available for the FIP or any other application. The system has been evaluated using measures of Precision, Recall and F-measure, reaching good results compared to similar systems
34

Inteligência artificial e a ilusão do percepto afetivo

Fusaro, Alberto Cabral 02 April 2018 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2018-06-06T12:05:21Z No. of bitstreams: 1 Alberto Cabral Fusaro.pdf: 927659 bytes, checksum: ef5aba7d663a9eee92192d1756b51a25 (MD5) / Made available in DSpace on 2018-06-06T12:05:21Z (GMT). No. of bitstreams: 1 Alberto Cabral Fusaro.pdf: 927659 bytes, checksum: ef5aba7d663a9eee92192d1756b51a25 (MD5) Previous issue date: 2018-04-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Our investigation fits into a branch of Artificial Intelligence research, namely the Weak AIs subset, aiming to figure out the way that these AIs are applied in videogames development – we call it just “games”, referring to all games that run on any form of electronics platform. Our focus bears on a strict human-behavior simulation system that goes on the market by the name of Drivatar, a system-controlled virtual-entity whose operation is based on machinelearning technology. They were developed by Microsoft and Turn10 Studios to perform as “simulated human” pilots in their Forza Motorsport automotive-racing franchise games. Our goal is to identify the main AI elements and their application strategies that enable them to create the illusion of humanity, making the players believe that they are their human counterparts instead of simulations / Nossa pesquisa se enquadra em um segmento do ramo de estudos de Inteligência Artificial, mais especificamente o das IAs Fracas, investigando o modo como são utilizadas no desenvolvimento de games – jogos que operam em uma plataforma de tecnologia eletrônica. Focalizamos a investigação em um sistema de simulação restrita de comportamento humano nomeado comercialmente como Drivatar, uma entidade virtual controlada pelo sistema que opera com base em aprendizagem de máquina, desenvolvida em parceria pelas empresas Turn10 Studios e Microsoft para atuar como simulações de pilotos humanos nos games do gênero de corrida de carros da franquia Forza Motorsport. Nosso objetivo é a identificação dos principais elementos de IA, bem como das estratégias utilizadas em sua aplicação, que habilitam esses agentes inteligentes a causar nos jogadores humanos a ilusão de que os Drivatars são os próprios indivíduos que estão simulando
35

Novo método para assinatura e identificação de sinais de eletrocomunicação de peixes elétricos de campo fraco da espécie Gymnotus carapo / Novel method for signature and identification of electrocommunication signals of the weakly electric fish Gymnotus carapo

Matias, Paulo 22 February 2011 (has links)
Desenvolvemos um método capaz de reconhecer assinaturas de descargas do órgão elétrico de peixes de campo elétrico fraco da espécie Gymnotus carapo. A assinatura de um peixe é computada com base no espectro de frequências de suas descargas, extraído por meio de uma transformada de Fourier, ou com base em uma análise tempo-frequência das mesmas, realizada por meio de uma transformada complexa de dupla árvore de pacote wavelet. Com o auxílio de uma máquina de vetores de suporte, um método de classificação supervisionada, utilizamos essas assinaturas para identificar, com boa precisão (estimada em 96%), o peixe de origem de cada descarga de órgão elétrico recebida durante uma aquisição com dois peixes movimentando-se livremente em um mesmo aquário. / We developed a method capable of recognizing signatures of the electric organ discharges of the weakly electric fish Gymnotus carapo. The signature of a fish is computed based on the frequency spectrum of its discharges, extracted using a Fourier transform, or based on a time-frequency analysis, done using a dual-tree complex wavelet packet transform. With the aid of a support vector machine, a supervisioned classification method, we use these signatures to identify, with good precision (estimated at 96%), the source fish of each electric organ discharge received during an acquisition with two fish freely swimming in the same aquarium.
36

Detecção de alterações cerebrais anatômicas associadas à esquizofrenia com base em redes convolucionais aplicadas a imagens de ressonância magnética

Vergara, Rodrigo Fay 13 July 2018 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-Graduação em Engenharia Biomédica, 2018. / A esquizofrenia é uma transtorno psíquico grave que afeta cerca de 1% da população mundial, e seu diagnóstico é realizado por um médico especializado baseando-se no Manual do Diagnóstico e Estatístico de Transtornos Mentais DSM-5. Contudo, este tipo de diagnóstico geralmente acontece de forma tardia e diminuindo as chances de tratamento. Diante da complexidade do diagnóstico clássico da esquizofrenia apresentado pelo manual e da descoberta de mudanças anatômicas em áreas do cérebro existentes em pacientes com a doença, estudos recentes que utilizaram as características anatômicas para classificação obtiveram resultados promissores. Apesar de mostrarem-se promissores, apenas algumas regiões do cérebro foram utilizadas para classificação, porém, a esquizofrenia apresenta alterações anatômicas em diversas áreas, não havendo um padrão de escolha definitivo para o problema. Por outro lado, houve avanços em técnicas de aprendizado de máquina como o Aprendizado Profundo (do inglês, deep learning). Nestas técnicas não há a necessidade da escolha de características para a classificação do estudo, em outras palavras, sendo uma técnica em que as estruturas aprendem as melhores características que descrevem o problema de forma automática, diferentemente de técnicas clássicas de classificação como a SVM (do inglês, Support Vector Machine), em que existe a necessidade da escolha destas características como forma de entrada. Neste contexto, a pesquisa propõe a aplicação de uma técnica de deep learning chamada Rede Neural Convolucional (CNN, do inglês Convolutional Neural Network ) para classificação automática de imagens de ressonância magnética estrutural do cérebro e diagnóstico da esquizofrenia, além de realizar a extração das características aprendidas no treinamento para utilização em outros classificadores clássicos para comparação. O método proposto consiste no desenvolvimento de uma estrutura convolucional baseada em CNN, produzindo métricas de desempenho como precisão, acurácia e sensibilidade relativos ao diagnóstico. Foi utilizado um banco de dados de MRI do encéfalo humano ponderadas em T2 de 87 indivíduos diagnosticados previamente com esquizofrenia e 85 indivíduos saudáveis de controle. O estudo ainda apresenta uma comparação de desempenho relativos ao tamanho da rede convolucional e o tamanho dos filtros utilizados, de modo a apresentar a rede que melhor se adéque ao problema. É realizada ainda uma validação cruzada dos dados, utilizando um método de holdout com reamostragem aleatória com 530 iterações para cada predição e um método de k-fold com k=20, afim de medir e comparar os algoritmos de aprendizado para produzir um resultado mais confiável e reprodutível, estimando o desempenho e normalizando a generalização do sistema. Em cada validação 70% das imagens foram utilizadas para treinamento e 30% para classificação e validação do sistema. Além disso, uma camada de dropout foi introduzida para prevenir a ocorrência de overfitting. Resultados utilizando k-fold apresentam uma acurácia média de 84% para uma rede convolucional de tamanho 3, com camadas de dropout antes e depois da camada de conexão. Portanto, o uso de técnicas de deep learning para auxílio ao diagnóstico de esquizofrenia mostra-se promissor, onde houve um avanço nos resultados previamente obtidos utilizando o mesmo banco de dados. Desta forma evidenciando que com o avanço de técnicas de classificação de imagens, mais próximo será a utilização destes modelos de forma segura para o auxílio ao diagnóstico de doenças. Ainda, a região que maior apresentou interferência e peso para classificação mostrou compatibilidade com a literatura existente. / Schizophrenia is a severe psychiatric disorder that affects about 1% of the world’s population and is diagnosed by a physician based on the Diagnostic and Statistical Manual of Mental Disorders DSM-5. However, this type of diagnosis usually happens belatedly, lowering treatment success. Given the complexity of the classic diagnosis of schizophrenia presented by the manual and the discovery of anatomical changes in areas of the brain existing in patients with the disease, recent studies that used anatomical characteristics for classification have obtained promising results. Although studies are promising, only a few regions of the brain have been used for classification, but schizophrenia has anatomical changes in several areas, and there is no definitive pattern of choice for the problem. On the other hand, there have been advances in machine learning techniques such as deep learning. In these techniques, there is no need to choose characteristics for the classification of the study; in other words, it is a technique which structures learn the best characteristics that describes the problem automatically, unlike the classical techniques of classification such as SVM (Support VectorMachine) which there is a need to choose these features as input. In this context, the research proposes the development of a deep learning technique called the Convolutional Neural Network (CNN) for automatic classification of brain magnetic resonance imaging and diagnosis of schizophrenia, also extracting the learne characteristics in training for use in other classical classifiers for comparison. The proposed method consists in developing a trellis structure based on CNN, producing performance metrics such as precision, accuracy and sensitivity for the diagnosis. An MRI database of the human brain T2-weighted of 87 individuals previously diagnosed with schizophrenia and 85 healthy control subjects was used. The study also shows a performance comparison for the size of convolutional network and filter size used to display the network that best describes the problem. A cross-validation of the data is performed, using a holdout method with random subsampling of 530 iterations for each prediction and a k-fold using k=20, in order to measure and compare the learning algorithms to produce a more reliable and reproducible result, estimating the performance and normalizing the generalization of the system. In each validation, 70% of the images were used for training and 30% for system classification and validation. In addition, a dropout layer was introduced to prevent the occurrence of overfitting. Preliminary results have an average accuracy of 84% for a convolutional network of size 3, with dropout layers before and after the connection layer. Therefore, the use of deep learning techniques to aid in the diagnosis of schizophrenia is promising, where there was an improvement in the results previously obtained using the same database, indicating that with the advancement of image classification techniques, the closer will be the use of these models in a safe way for diagnosis of diseases. Also, the region that presented the greatest interference and weight for classification was compatible with the existing literature.
37

Meta-aprendizagem aplicada à classificação de dados de expressão gênica / Meta-learning applied to gene expression data classification

Souza, Bruno Feres de 26 October 2010 (has links)
Dentre as aplicações mais comuns envolvendo microarrays, pode-se destacar a classificação de amostras de tecido, essencial para a identificação correta da ocorrência de câncer. Essa classificação é realizada com a ajuda de algoritmos de Aprendizagem de Máquina. A escolha do algoritmo mais adequado para um dado problema não é trivial. Nesta tese de doutorado, estudou-se a utilização de meta-aprendizagem como uma solução viável. Os resultados experimentais atestaram o sucesso da aplicação utilizando um arcabouço padrão para caracterização dos dados e para a construção da recomendação. A partir de então, buscou-se realizar melhorias nesses dois aspectos. Inicialmente, foi proposto um novo conjunto de meta-atributos baseado em índices de validação de agrupamentos. Em seguida, estendeu-se o método de construção de rankings kNN para ponderar a influência dos vizinhos mais próximos. No contexto de meta-regressão, introduziu-se o uso de SVMs para estimar o desempenho de algoritmos de classificação. Árvores de decisão também foram empregadas para a construção da recomendação de algoritmos. Ante seu desempenho inferior, empregou-se um esquema de comitês de árvores, que melhorou sobremaneira a qualidade dos resultados / Among the most common applications involving microarray, one can highlight the classification of tissue samples, which is essential for the correct identification of the occurrence of cancer and its type. This classification takes place with the aid of machine learning algorithms. Choosing the best algorithm for a given problem is not trivial. In this thesis, we studied the use of meta-learning as a viable solution. The experimental results confirmed the success of the application using a standard framework for characterizing data and constructing the recommendation. Thereafter, some improvements were made in these two aspects. Initially, a new set of meta-attributes was proposed, which are based on cluster validation indices. Then the kNN method for ranking construction was extended to weight the influence of nearest neighbors. In the context of meta-regression, the use of SVMs was introduced to estimate the performance of ranking algorithms. Decision trees were also employed for recommending algorithms. Due to their low performance, a ensemble of trees was employed, which greatly improved the quality of results
38

Modelo de mineração de dados em bases de dados acadêmicas / Data mining model in academics databases

Silva, Renan Monteiro da 12 April 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-05-17T16:17:57Z No. of bitstreams: 1 2016_RenanMonteirodaSilva.pdf: 2565220 bytes, checksum: 9d4ad5ce9de42a46b61bb7148d21919d (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-05-26T16:25:53Z (GMT) No. of bitstreams: 1 2016_RenanMonteirodaSilva.pdf: 2565220 bytes, checksum: 9d4ad5ce9de42a46b61bb7148d21919d (MD5) / Made available in DSpace on 2016-05-26T16:25:53Z (GMT). No. of bitstreams: 1 2016_RenanMonteirodaSilva.pdf: 2565220 bytes, checksum: 9d4ad5ce9de42a46b61bb7148d21919d (MD5) / No campo das comunidades de pesquisa existe uma série de bases de dados que proveem informações interessantes sobre publicações resultantes da pesquisa, incluindo títulos de artigos, autores, palavras-chave, citações, índices, veículos de publicação (revistas, livros, conferências e os tipos de eventos mais importantes) e assim por diante. Exemplos de tais bases de dados são Google Scholar, CiteSeerX, DBLP, Microsoft Academic, Thomson Reuters Web of Science, entre outros. No entanto, essas bases de dados globais ainda carecem de serviços que possam ser usados na procura por comunidades ou agrupamentos. Uma comunidade pode ser definida como um grupo de entidades, nesse caso autores e/ou universidades, que compartilham atributos ou relacionamentos semelhantes. Neste trabalho é proposto um modelo de mineração e análise das informações contidas nessas bases de dados acadêmicas. A análise dessas informações apresentadas nos resultados visa à descoberta das universidades, autores e assuntos mais significativos dentro do contexto dos dados minerados. Para isso foi feito um estudo de caso utilizando as informações contidas nas bases de dados do CiteSeerX e do DBLP como ponto de partida para a criação de um modelo genérico com o objetivo de ser aplicável a qualquer base de dados acadêmica. No estudo de caso é feita uma extensa mineração nas bases de dados do CiteSeerX e do DBLP, a partir dessa etapa é feita a migração e tratamento dos dados originais obtidos para o modelo genérico proposto neste trabalho. Com o modelo preenchido são aplicados os algoritmos e instruções para geração dos resultados que são subdivididos em três diferentes categorias: clusters, rankings e comunidades de relacionamento. A partir dos resultados são investigadas as tendências atuais na colaboração entre autores e institutos educacionais usando as bases de dados do CiteSeerX e do DBLP. Com a obtenção das informações disponíveis foram construídos várias comunidades e agrupamentos usando as técnicas de clusterização existentes. _______________________________________________________________________________________________ ABSTRACT / In the field of the research community, several databases such as Google Scholar, CiteSeerX, DBP, Microsoft Academic, Thomson Reuter´s Web of Science among others provide interesting information about authors, citations, indexes, most relevant venues types and so on. However, those global databases have limitations, especially in finding communities or clusters. A community can be defined as a group of entities, in this case authors and/or universities that share similar properties or relations. In this work, it is proposed a model of data mining and analysis of the obtained information in these academics databases. The analysis of the presented information in the results aims the discovery of the universities, authors and subjects most significant inside the context of the mined data. Thus a study case was realized using the CiteSeerX database as the start point for creating a generic model in order to be applied in any academic database. In the study case an extensive data mining was performed in the CiteSeerX database, as well as the migration and treatment of the original data obtained for the generic model proposed in this work. With the model data filled the proposed algorithms and the code instructions were applied for the generation of the results which are subdivided in three different categories: clusters, rankings and relationship communities. From the results, the work is validated by showing the current trends in the collaboration between authors and educational institutes, using the CiteSeerX dataset. By mining the available information, several communities and clusters are revealed using the proposed techniques.
39

On deeply learning features for automatic person image re-identification

Franco, Alexandre da Costa e Silva 13 May 2016 (has links)
Submitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2017-03-10T14:39:59Z No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-03-10T14:52:25Z (GMT) No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5) / Made available in DSpace on 2017-03-10T14:52:25Z (GMT). No. of bitstreams: 1 tese_alexandre_versao_final_bd.pdf: 3780030 bytes, checksum: 765f095f9626a12f3b43a6bf9fdb97f3 (MD5) / The automatic person re-identification (re-id) problem resides in matching an unknown person image to a database of previously labeled images of people. Among several issues to cope with this research field, person re-id has to deal with person appearance and environment variations. As such, discriminative features to represent a person identity must be robust regardless those variations. Comparison among two image features is commonly accomplished by distance metrics. Although features and distance metrics can be handcrafted or trainable, the latter type has demonstrated more potential to breakthroughs in achieving state-of-the-art performance over public data sets. A recent paradigm that allows to work with trainable features is deep learning, which aims at learning features directly from raw image data. Although deep learning has recently achieved significant improvements in person re-identification, found on some few recent works, there is still room for learning strategies, which can be exploited to increase the current state-of-the-art performance. In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learning (CFL), as well as a novel type of feature, called convolutional covariance features (CCF), for person re-identification. CFL is based on the human learning process. The core of CFL is a framework conceived to perform a cascade network training, learning person image features from generic-to-specific concepts about a person. Each network is comprised of a convolutional neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The CNN is responsible to learn local features, while the DBN-DAE learns global features, robust to illumination changing, certain image deformations, horizontal mirroring and image blurring. After extracting the convolutional features via CFL, those ones are then wrapped in covariance matrices, composing the CCF. CCF and flat features were combined to improve the performance of person re-identification in comparison with component features. The performance of the proposed framework was assessed comparatively against 18 state-of-the-art methods by using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching characteristic curves and top ranking references. After a thorough analysis, our proposed framework demonstrated a superior performance.
40

Cross-domain deep face matching for banking security systems / Matching de faces de diferentes domínios para sistemas de segurança bancário

Oliveira, Johnatan Santos de 23 May 2018 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2018. / Submitted by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-11-07T19:44:44Z No. of bitstreams: 1 2018_JohnatanSantosdeOliveira.pdf: 5538984 bytes, checksum: 20580b9ff8534339b6b7390d5c55d9fb (MD5) / Approved for entry into archive by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-11-12T17:49:55Z (GMT) No. of bitstreams: 1 2018_JohnatanSantosdeOliveira.pdf: 5538984 bytes, checksum: 20580b9ff8534339b6b7390d5c55d9fb (MD5) / Made available in DSpace on 2018-11-12T17:49:55Z (GMT). No. of bitstreams: 1 2018_JohnatanSantosdeOliveira.pdf: 5538984 bytes, checksum: 20580b9ff8534339b6b7390d5c55d9fb (MD5) Previous issue date: 2018-11-12 / Um dos principais desafios enfrentados pelo sistema bancário é garantir a segurança das transações financeiras. Devido à conveniência e aceitação, o uso de caracterı́sticas faciais para autenticação biométrica de usuários em sistemas bancários está se tornando uma tendência mundial. Essa abordagem de autenticação de usuários está atraindo grandes investimentos de instituições bancárias e financeiras, especialmente em cenários de diferentes domı́nios, nos quais imagens faciais tiradas de documentos de identificação são comparadas com autorretratos digitais (selfies) tiradas com câmeras de dispositivos móveis. Neste estudo, coletamos das bases de dados do maior banco público brasileiro um grande dataset, chamado FaceBank, com 27.002 imagens de selfies e fotos de documentos de identificação de 13.501 sujeitos. Em seguida, avaliamos os desempenhos de dois modelos de Redes Neurais Convolucionais bem referenciados (VGG-Face e OpenFace) para extração de caracterı́sticas profundas, bem como os desempenhos de quatro classificadores (SVM Linear, SVM Power Mean, Random Forest e Random Forest com o Ensemble Vote) para autenticação robusta de face em diferentes domı́nios. Com base nos resultados obtidos (precisões superiores a 90%, em geral), é possı́vel concluir que a abordagem de matching de faces profundas avaliada neste estudo é adequada para autenticação de usuários em aplicações bancárias entre domı́nios. Até onde sabemos, este é o primeiro trabalho que usa um grande conjunto de dados composto por imagens bancárias reais para avaliar a abordagem de autenticação de face entre domı́nios. Além disso, este trabalho apresenta um estudo sobre as reais necessidades na implementação futura de um sistema biométrico, propondo um sistema de nuvem para permitir a adoção de tecnologias biométricas. Por fim, propõe também um modelo seguro e integrado de subsistema ABIS de transmissão de dados. Toda a análise e implementação leva em conta a total aderência e compatibilidade com padrões e especificações propostos pelo governo brasileiro. / Ensuring the security of transactions is currently one of the major challenges facing banking systems. The use of facial features for biometric authentication of users in banking systems is becoming a worldwide trend, due to the convenience and acceptability of this form of identification, and also because computers and mobile devices already have built-in cameras. This user authentication approach is attracting large investments from banking and financial institutions especially in cross-domain scenarios, in which facial images taken from ID documents are compared with digital self-portraits (selfies) taken with mobile device cameras. In this study, from the databases of the largest public Brazilian bank we collected a large dataset, called FaceBank, with 27,002 images of selfies and ID document photos from 13,501 subjects. Then, we assessed the performances of two well-referenced Convolutional Neural Networks models (VGG-Face and OpenFace) for deep face features extraction, as well as the performances of four effective classifiers (Linear SVM, Power Mean SVM, Random Forest and Random Forest with Ensemble Vote) for robust cross-domain face authentication. Based on the results obtained (authentication accuracies higher than 90%, in general), it is possible to conclude that the deep face matching approach assessed in this study is suitable for user authentication in cross-domain banking applications. To the best of our knowledge, this is the first study that uses a large dataset composed of real banking images to assess the cross-domain face authentication approach to be used in banking systems. As an additional, this work presents a study on the real needs in the future implementation of a biometric system proposing a cloud system to enable the adoption of biometrics technologies, creating a new model of service delivery. Besides that, proposes a secure and integrated ABIS Data Transmission subsystem model. All the analysis and implementation takes into account the total adherence and compatibility with the standards and specifications proposed by the Brazilian government, at the same time, establish mechanisms and controls to ensure the effective protection of data.

Page generated in 0.1009 seconds