• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low temperature tungsten trioxide nano/micro-systems for applications in gas sensing and electrochromism

Tumbain, Sone Bertrand January 2013 (has links)
Philosophiae Doctor - PhD / In this work we primarily set out to investigate the technique of Aqueous Chemical Growth as a means of producing WO3 thin films that find applications in gas sensing and electrochromism. For the first time we demonstrated in this work, the heterogenous nucleation and growth of WO3 thin films on plain glass substrates and F-doped SnO2-glass substrates. This was achieved without the use of surfactants and template directing methods, using as a precursor solution Peroxotungstic Acid generated from the action of 30% H2O2 on pure W powder. The substrates used needed no surface-modification. On the plain glass substrates (soda lime silicates) a variety of micronanostructures could be observed prime of which were nanoplatelets that acted as a basic building block for the self-assembly of more hierarchical 3-d microspheres and thin films. On FTO a wide variety of micro-/nanostructures were observed dominant amongst which were urchin-like microspheres. The dominant crystallographic structure observed (through X-ray diffraction analysis, SAED, HRTEM) for the WO3 thin films on both substrate types post-annealing at 500 ˚C for a period of 1 - 2 h, was hexagonal-WO3. Next was monoclinic WO3. On rarer occasions the formation of triclinic and cubic WO3 was observed. The thin films produced showed a fairly high degree of porosity and had thicknesses in the range of 900 nm - 3.5 μm. I-V characterisation measurements using a 4-point collinear probe Keithley source alongside photoluminescence was used to establish the insulating nature of some of the films as well as their sub-stoichiometric nature. X-ray Photoelectron Spectroscopy was used to confirm the substoichiometric nature of some of the films.
2

Synthesis, Characterization and Applications of Metal Oxide Nanostructures

Hussain, Mushtaque January 2014 (has links)
The main objective of nanotechnology is to build self-powered nanosystems that are ultrasmall in size, exhibit super sensitivity, extraordinary multi functionality, and extremely low power consumption. As we all know that 21st century has brought two most important challenges for us. One is energy shortage and the other is global warming. Now to overcome these challenges, it is highly desirable to develop nanotechnology that harvests energy from the environment to fabricate self-power and low-carbon nanodevices. Therefore a self-power nanosystem that harvests its operating energy from the environment is an attractive proposition. This is also feasible for nanodevices owing to their extremely low power consumption. One advantageous approach towards harvesting energy from the environment is the utilization of semiconducting piezoelectric materials, which facilitate the conversion of mechanical energy into electrical energy. Among many piezoelectric materials ZnO has the rare attribute of possessing both piezoelectric and semiconducting properties. But most applications of ZnO utilize either the semiconducting or piezoelectric property, and now it’s time to fully employ the coupled semiconducting-piezoelectric properties to form  the basis for electromechanically coupled nanodevices. Since wurtzite zinc oxide (ZnO) is structurally noncentral symmetric and has the highest piezoelectric tensor among tetrahedrally bonded semiconductors, therefore it becomes a promising candidate for energy harvesting applications. ZnO is relatively biosafe and biocompatible as well, so it can be used at large scale without any harm to the living environment. The synthesis of another transition metal oxide known as Co3O4 is also important due to its potential usage in the material science, physics and chemistry fields. Co3O4 has been studied extensively due to low cost, low toxicity, the most naturally abundant, high surface area, good redox, easily tunable surface and structural properties. These significant properties enable Co3O4 fruitful for developing variety of nanodevices. Co3O4 nanostructures have been focused considerably in the past decade due to their high electro-chemical performance, which is essential for developing highly sensitive sensor devices. I started my work with the synthesis of ZnO nanostructures with a focus to improve the amount of harvested energy by utilizing oxygen plasma treatment. Then I grow ZnO nanorods on different flexible substrates, in order to observe the effect of substrate on the amount of harvested energy. After that I worked on understanding the mechanism and causes of variation in the resulting output potential generated from ZnO nanorods. My next target belongs to an innovative approach in which AFM tip decorated with ZnO nanorods was utilized to improve the output energy. Then I investigated Co3O4 nanostructures though the effect of anions and utilized one of the nanostructure to develop a fast and reliable pH sensor. Finally to take the advantage of higher degree of redox chemistry of NiCo0O4 compared to the single phase of nickel oxide and cobalt oxide, a sensitive glucose sensor is developed by immobilizing glucose oxidase. However, there were problems with the mechanical robustness, lifetime, output stability and environmental adaptability of such devices, therefore more work is going on to find out new ways and means in order to improve the performance of fabricated nanogenerators and sensors.

Page generated in 0.0727 seconds