• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recharging the Ogallala Formation Using Shallow Holes

Dvoracek, M. J., Peterson, S. H. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / The southern bed of the ogallala aquifer is hydrologically isolated from all outside areas of recharge, requiring local precipitation for all natural recharge. Current withdrawals are so much greater than natural recharge that it appears that artificial recharge affords the only means of establishing at least a pseudo-balance. A number of observation wells were drilled at Texas Tech University, and subsequently capped until recharge water became available. The initial recharge was 2.5 af over 12 days, at a rate of 120 gpm for about the first day, after which 60 gpm was relatively constant. Approximately 1 month later, 1.2 af were recharged over 3 days at rates ranging over 140-90 gpm. It became evident that a cavity was present at the bottom of the hole being recharged. On a later recharge occasion, the cavity seemed to have enlarged. During a period of 2 years more than 28 af of surface runoff water have been recharged through the shallow hole with increases in recharge rates for each subsequent recharge period. The nature of this phenomenon and the cavities are not understood. This may represent the long sought after answer to recharge of the aquifer, but much more extensive research needs to be done.
2

Water Resources of the Inner Basin of San Francisco Volcano, Coconino County, Arizona

Montgomery, E. L., DeWitt, R. H. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The inner basin is a collapse and erosional feature in San Francisco Mountain, an extinct volcano of late Cenozoic age, which lies approximately eight miles north of flagstaff, Arizona. The main aquifer's coefficient of transmissibility is approximately 14,000 gallons per day per foot and the storage coefficient was 0.08. Aquifer boundaries increased rates of drawdown of water levels in the inner basin well field. Inner basin springs which issue from perched reservoirs are not affected by pumpage of inner basin wells. Recharge is greater than the average yield from springs and wells in the basin which has an average of 8,000 acre-feet of water in storage in the principal aquifer. A large amount of water is lost from the inner basin aquifer system via leakage into underlying fractured volcanic rocks. It is believed that a part of this water could be intercepted by pumpage from a well constructed in the interior valley.
3

Structural Relations Determined from Interpretation of Geophysical Surveys: Woody Mountain Well Field, Coconino County, Arizona

Scott, Phyllis K., Montgomery, E. L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The Coconino Sandstone of Permian age is the principal aquifer for the Woody Mountain well field, a source of municipal water for the City of Flagstaff. Wells of highest yield are located where the frequency of occurrence of faults is greatest and where the principal aquifer is down-faulted. The locations and displacements of all but the most prominent faults cannot be determined using conventional geologic mapping techniques because relatively undeformed Late Cenozoic basaltic lavas cover the faulted Paleozoic rock terrain. Approximately 3,500 feet of Paleozoic sedimentary rocks, which have little magnetic effect and which have a density of approximately 2.4, comprise most of the stratigraphic section in the well field. The basalt cover is strongly reversely magnetized and has a density of approximately 2.7. Changes in thickness of the basalt cover cause changes in the geomagnetic and gravitational field strength. Analysis of data from geomagnetic and gravity surveys was used to delineate boundaries and thicknesses of blocks of basalt which fill down -faulted areas. The correlation coefficient (r² = 0.96) for plots of known thicknesses of basalt versus complete Bouguer anomaly supports use of gravity data to estimate displacement of down -faulted blocks.
4

Preliminary Investigations of the Hydrologic Properties of Diatremes in the Hopi Buttes, Arizona

Scott, Kenneth C., Edmonds, R. J., Montgomery, E. L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Diatremes of Late Pliocene age in the Hopi Buttes area of Arizona are becoming increasingly important sources of groundwater to the Indian nations. These volcanic vent structures are prime sources of groundwater because sedimentary formations in the Hopi Buttes area yield only limited amounts of water or yield poor quality water. Diatremes act as traps for groundwater and some have yielded moderate amounts of good quality water to wells. Surface geologic investigations and analysis of drillers' logs indicate that structural relationships and diatreme lithology provide a means to project the hydrologic properties of the vent. Diatremes most suitable for groundwater development should have a diameter greater than one half mile, should contain volcanic tuff and breccia at its center, and should be fractured from collapse. Lava flows covering diatremes reduce recharge from sheet wash or from ephemeral stream flow. Data from geomagnetic and gravity surveys will be analyzed to determine its suitability for predicting subsurface size, shape, and lithology of the diatreme. The integration of geophysical and surface geologic data will reveal the total geometry of the structure enabling the most accurate appraisal of the hydrologic properties of the diatreme.
5

The Effects on Water Quality by Mining Activity in the Miami, Arizona Region

Young, D. W., Clark, R. B. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Intensive strip and leach mining activity within a confined region usually causes environmental impacts both on the land and on water quality. Adverse water quality effects could be realized long after any mining activity has ceased due to the continuous leaching by precipitation of contaminants from spoils piles and leach dumps. The Miami, Arizona region is unique in its surface and subsurface hydrology. Two unconnected aquifers underlay the region with both serving as domestic (private and municipal) and industrial (mining) supply sources. The shallow floodplain alluvial aquifer is hydraulically connected to surface drainage from mine tailings and leach dumps. Several wells drawing from this aquifer have been abandoned as a municipal supply source due to severe water quality degradation. Water quality in these wells varies directly with precipitation indicating a correlation between surface drainage over and through tailings and leach piles. Expansion of spoils dumps into natural recharge pathways of the deeper Gila Conglomerate aquifer has raised concern that this aquifer may also be subjected to a long term influx of mine pollutants. Questions have also been raised concerning the potential effects of a proposed in situ leaching operation on the water quality of the conglomerate aquifer.

Page generated in 0.1024 seconds