• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Požeminio vandens išteklių baseininio valdymo ypatumai / The Peculiarities of the River Basin Management of Groundwater Resources

Donauskaitė, Eglė 07 February 2011 (has links)
Lietuvai vykdant vandenų politiką teko įgyvendinti ES direktyvų reikalavimus. Bendroji vandens politikos direktyva numato visą vandens apytakos gamtoje rato priežiūrą ir apsaugą, tad reikalaujama įgyvendinti vandens išteklių baseininio valdymo sistemą. Pagal šią sistemą susiejami upių baseinai ir požeminio vandens telkiniai, tarp kurių Lietuvos sąlygomis ryšio nėra, juo labiau jų ribos nesutampa. Šalis išsiskiria tarp daugumos Europos valstybių, nes turi palankias geologines ir klimatines sąlygas gausiems požeminio vandens ištekliams kauptis ir tik juos naudoja geriamam vandeniui tiekti. Todėl požeminio vandens, kaip vienintelio geriamojo vandens šaltinio Lietuvoje, apsauga yra labai svarbi. Baigiamojo magistro darbo tikslas yra išanalizuoti požeminio vandens išteklių baseininį valdymą ir jo įgyvendinimą bei ypatumus Lietuvoje. Kad pasiekti šį tikslą, buvo analizuojama esama požeminio vandens išteklių baseininio valdymo sistema Lietuvoje ir bandoma atskleisti požeminio vandens baseininio valdymo efektyvumą. Darbo įvade iškelta hipotezė, kad požeminio vandens išteklių baseininis valdymas Lietuvoje nevyksta efektyviai ir realiai negali padėti siekti Bendrojoje vandens politikos direktyvoje požeminiam vandeniui keliamų tikslų. Ekspertų nuomonė pateikiama visame darbe, o pagrindinai – paskutinėje darbo dalyje. Darbo pabaigoje pateikiamos išvados ir rekomendacijos. / Lithuania had to implement the requirements of EU directives when water policy was being implemented. The Water Framework Directive provides supervision and protection of the entire water circuit and requires to implement the river basin management system. This system joins the river basins and the bodies of groundwater, which have no link in the territory of Lithuania. In addition, the borders of both the river basins and the bodies of groundwater do not coincide. Lithuania differs from the majority of other European states because it has favourable geological and climatic conditions that account for the accumulation of abundant groundwater resources – only resources used for drinking water supply. Therefore the protection of groundwater is very important in Lithuania because it is only source of drinking water in this country. The aim of fhe final Master‘s work is to analyse the river basin management of groundwater resources and its implementation and peculiarities in Lithuania. To reach this aim the present river basin management system of groundwater resources has been analysed and the efficiency of this system has been exposed. The hypothesis that the river basin management of groundwater resources in Lithuania is not efficient and it can not help to reach the aims setted for groundwater resources in The Water Framework Directive is confirmed. The opinion of the experts is provided in the work and mainly in its last part. The conclusions and the proposals are... [to full text]
2

Uncertainties in Digital-Computer Modeling of Ground-Water Basins

Gates, Joseph S., | Kisiel, Chester C. 23 April 1971 (has links)
From the Proceedings of the 1971 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 22-23, 1971, Tempe, Arizona / Much future computer modeling of the responses of groundwater to water development stresses may be poorly done if the errors and limitations of digital models are not fully appreciated by groundwater hydrologists. Two digital models were constructed of the Tucson basin, one with 1,890 nodes of 1/4 square mile area each and one with 509 nodes of 1 square mile each. The starting point for the digital model was the 2-dimensional, linear, parabolic, time-and space-invariant differential equation of incompressible flow through porous media. An explicit finite-difference equivalent was determined, and a set of 1,890 equations were put in implicit form and solved on a computer in less than 20 seconds at a cost of 2.00 dollars. The errors associated with the model are discussed. In deciding what new data collected in the Tucson basin would give the most improvement in the digital model, a statistical decision theory approach was utilized in which expected opportunity loss and expected worth of sample were calculated for 5 variables. The data was computed using about 110 seconds of computer time, costing about 13.00 dollars. This technique has the advantage of including basin dynamics in estimating worth of additional data by means of using the digital model to compute all values of predicted and 'true' water levels included in the loss function.
3

Transmissivity Distribution in the Tucson Basin Aquifer

Supkow, D. J. 06 May 1972 (has links)
From the Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 5-6, 1972, Prescott, Arizona / The distribution of transmissivity within the Tucson basin aquifer, as determined by pumping tests and reviewed in the construction of a digital model of the aquifer, was not totally random in space. Data tended to be distributed normally or log-normally for biased samples of developed wells. A frequency distribution of transmissivity derived from a calibrated digital model is more nearly representative of the real world because the aquifer sample is without bias as the sample constitutes the entire aquifer. Geohydrologic setting, electric analog, and digital models of the basin are discussed. The theory of transmissivity distribution in an arid land alluvial aquifer is developed from Horton's laws of exponential relationship between stream order and drainage network parameters. It is hypothesized that there is an exponential relationship between transmissivity of an alluvial aquifer. A statistical study was made of values derived from the digital model to test the probability density function hypothesized for transmissivity. The mean value is a function of climate and drainage area. These hypotheses require further validation.
4

Groundwater Recharge from a Portion of the Santa Catalina Mountains

Belan, R. A., Matlock, W. G. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / The geohydrology of a portion of the Santa Catalina Mountains including the definition of aquifer systems in the foothills was studied in order to calculate groundwater recharge to the Tucson basin. This underlying groundwater aquifer is the only source of Tucson, Arizona's water supply. A well network, well logs, geologic profiles, and a water level contour map were used as source information. Recharge was found to occur in some sections of washes and close to the mountains where washes cross or coincide with faults. Significant recharge to sand and gravel aquifers occurs directly through faults and joints. Little of the surface runoff is thought to recharge local aquifers because of low permeability layers beneath the alluvium and the short duration of the flows. Recharge calculation using the Darcy equation was subject to considerable error; but flow net analysis showed the total recharge to be 336 acre-feet per year representing about 50 acre feet per mile of mountain front per year.
5

Water Resources of the Inner Basin of San Francisco Volcano, Coconino County, Arizona

Montgomery, E. L., DeWitt, R. H. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The inner basin is a collapse and erosional feature in San Francisco Mountain, an extinct volcano of late Cenozoic age, which lies approximately eight miles north of flagstaff, Arizona. The main aquifer's coefficient of transmissibility is approximately 14,000 gallons per day per foot and the storage coefficient was 0.08. Aquifer boundaries increased rates of drawdown of water levels in the inner basin well field. Inner basin springs which issue from perched reservoirs are not affected by pumpage of inner basin wells. Recharge is greater than the average yield from springs and wells in the basin which has an average of 8,000 acre-feet of water in storage in the principal aquifer. A large amount of water is lost from the inner basin aquifer system via leakage into underlying fractured volcanic rocks. It is believed that a part of this water could be intercepted by pumpage from a well constructed in the interior valley.
6

Structural Relations Determined from Interpretation of Geophysical Surveys: Woody Mountain Well Field, Coconino County, Arizona

Scott, Phyllis K., Montgomery, E. L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / The Coconino Sandstone of Permian age is the principal aquifer for the Woody Mountain well field, a source of municipal water for the City of Flagstaff. Wells of highest yield are located where the frequency of occurrence of faults is greatest and where the principal aquifer is down-faulted. The locations and displacements of all but the most prominent faults cannot be determined using conventional geologic mapping techniques because relatively undeformed Late Cenozoic basaltic lavas cover the faulted Paleozoic rock terrain. Approximately 3,500 feet of Paleozoic sedimentary rocks, which have little magnetic effect and which have a density of approximately 2.4, comprise most of the stratigraphic section in the well field. The basalt cover is strongly reversely magnetized and has a density of approximately 2.7. Changes in thickness of the basalt cover cause changes in the geomagnetic and gravitational field strength. Analysis of data from geomagnetic and gravity surveys was used to delineate boundaries and thicknesses of blocks of basalt which fill down -faulted areas. The correlation coefficient (r² = 0.96) for plots of known thicknesses of basalt versus complete Bouguer anomaly supports use of gravity data to estimate displacement of down -faulted blocks.
7

Preliminary Investigations of the Hydrologic Properties of Diatremes in the Hopi Buttes, Arizona

Scott, Kenneth C., Edmonds, R. J., Montgomery, E. L. 20 April 1974 (has links)
From the Proceedings of the 1974 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 19-20, 1974, Flagstaff, Arizona / Diatremes of Late Pliocene age in the Hopi Buttes area of Arizona are becoming increasingly important sources of groundwater to the Indian nations. These volcanic vent structures are prime sources of groundwater because sedimentary formations in the Hopi Buttes area yield only limited amounts of water or yield poor quality water. Diatremes act as traps for groundwater and some have yielded moderate amounts of good quality water to wells. Surface geologic investigations and analysis of drillers' logs indicate that structural relationships and diatreme lithology provide a means to project the hydrologic properties of the vent. Diatremes most suitable for groundwater development should have a diameter greater than one half mile, should contain volcanic tuff and breccia at its center, and should be fractured from collapse. Lava flows covering diatremes reduce recharge from sheet wash or from ephemeral stream flow. Data from geomagnetic and gravity surveys will be analyzed to determine its suitability for predicting subsurface size, shape, and lithology of the diatreme. The integration of geophysical and surface geologic data will reveal the total geometry of the structure enabling the most accurate appraisal of the hydrologic properties of the diatreme.
8

Management Alternatives for Santa Cruz Basin Groundwater

Foster, K. E. 15 April 1978 (has links)
From the Proceedings of the 1978 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 14-15, 1978, Flagstaff, Arizona / Combined urban, agricultural, industrial and mining groundwater withdrawal from the Santa Cruz River Basin exceeds natural aquifer replenishment by 74,000 acre -feet annually. Four ameliorative water management alternatives are presented singly and in combination with one another. These alternatives are importing Colorado River water, exchanging treated effluent with mining and agricultural interests for groundwater, interbasin water transfer, and retiring farmlands for groundwater rights. These management philosophies are applicable to most economically emergent urban areas in arid and semiarid regions.

Page generated in 0.6502 seconds