• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Geomorphic and Hydraulic Response of Rivers

Simons, D. B. 12 April 1975 (has links)
From the Proceedings of the 1975 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - April 11-12, 1975, Tempe, Arizona / The importance of water resources and an increasing interest on improvement of out environment have identified the urgent need for methods to predict river response due to various changes resulting from proposed water resource planning. Fluvial geomorphology and hydraulic elements that are related to the interpretation and modeling of response to the problem are presented. Interpretation of alluvial rivers should be preceded by a qualitative analysis and information is presented which should be adequate to carry this out in most cases. This should be followed by a quantitative evaluation of channel response and water sediment routing using theory supplemented by physical and mathematical model studies of the system.
2

Groundwater Geology of Fort Valley, Coconino County, Arizona

DeWitt, Ronald H. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / All groundwater in fort valley is presently found in perched aquifers. The regional water table in the area is estimated to lie at a depth of approximately 1750 feet. Groundwater reservoirs are perched on impermeable clay zones located at the base of alluvial units. Groundwater is also found in highly fractured volcanic zones overlaying impermeable clay zones. Perched aquifers also occur in interflow zones above either impermeable clays or unfractured volcanics. Groundwater in fort valley is the result of infiltration or runoff and from precipitation. This recharge water infiltrates the alluvium or fractured volcanic rocks until an impermeable zone is reached where it becomes perched groundwater. Greatest well yields come from these recharge aquifers; their reliability is largely dependent on precipitation and runoff. Most wells in the fort valley area supply adequate amounts of water for domestic use.
3

Groundwater Recharge from a Portion of the Santa Catalina Mountains

Belan, R. A., Matlock, W. G. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / The geohydrology of a portion of the Santa Catalina Mountains including the definition of aquifer systems in the foothills was studied in order to calculate groundwater recharge to the Tucson basin. This underlying groundwater aquifer is the only source of Tucson, Arizona's water supply. A well network, well logs, geologic profiles, and a water level contour map were used as source information. Recharge was found to occur in some sections of washes and close to the mountains where washes cross or coincide with faults. Significant recharge to sand and gravel aquifers occurs directly through faults and joints. Little of the surface runoff is thought to recharge local aquifers because of low permeability layers beneath the alluvium and the short duration of the flows. Recharge calculation using the Darcy equation was subject to considerable error; but flow net analysis showed the total recharge to be 336 acre-feet per year representing about 50 acre feet per mile of mountain front per year.

Page generated in 0.0702 seconds