• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deinococcus geothermalis genome scale structure study to design and engineer heterologous metabolic pathways / Etude de l'architecture du génome de Deinococcus geothermalis pour la conception et l'ingénierie de voie métaboliques hétérologues

Zaworski, Julie 23 November 2017 (has links)
Deinococcus geothermalis est un organisme non-model intéressant pour les bio-productions de part sa résistance extrême et ses capacités de fermentation partant de diverses sources de carbone. Cependant les outils d’ingénierie permettant une fine maîtrise des voix métaboliques restent limités pour cet organisme. Le but de ce travail de thèse, est d’essayer de surpasser cet obstacle à travers l’observation des motifs génétiques et de leur organisation. L’analyses de ces motifs a été menée via deux approches. La première est l’étude de l’impact de la position dans le génome sur l’expression d’une cassette reportrice. Grâce à une collection de 150 souches, nous avons observé que l’expression est plus forte au niveau de l’origine de réplication que du terminus. Une autre observation concerne la présence de zone de forte expression réparties symétriquement le long du chromosome. La seconde approche est l’analyse des motifs génétiques en cas de stress grace outil GREAT:SCAN:patterns. Ces motifs sont fortement liés régulation de l’expression des gènes et sont des points intéressant pour l’ingénierie du génome. En analysant les résultats de différentes conditions de stress ainsi que les régulons décrits dans la littérature, nous avons pu observer que des stress voisins partagent les mêmes motifs et que ces motifs semblent conservés chez des organismes distants. Ces deux approches ont permis de déterminer des positions d’insertion dans le génome intéressantes pour l’ingénierie métabolique. / Deinococcus geothermalis is a non-model organism of high interest for bio-manufacturing since it shows a extreme resistance and good capacities for fermentation process on different carbon sources. However the engineering tools are limited to finely tuned metabolic pathways for bio-productions. This PhD work aims at contributing to overcome this obstacle through a whole-genome approach to the issue of understanding the genomic organization of D. geothermalis and defined interesting genomic locations. The whole-genome approach is based on the existence of genome-scale patterns that were analyzed in two different ways. A first approach consisted of studying the influence of the genome location on the expression of a reporter cassette. On a library of over 150 strains, the expression is higher near the origin of replication than near the terminus, a common observation. However, other hot spots of expression along the genome additionally appeared with a symmetric distribution about the origin of replication. The second approach consisted of analyzing the genomic patterns under stress through the in-house GREAT:SCAN:patterns software. These patterns interrelate with gene expression regulation and are an interesting key for genome engineering. Testing different stress conditions and considering the matching regulons as described in the literature, it appeared that related stresses share genomic patterns. Moreover these patterns tend to be conserved between distant organisms. These two approaches lead to define interesting genome loci for inserting genes encoding the enzymes of a pathway, with a view to metabolic engineering.
2

The functional and spatial organization of chromatin during Thymocyte development / L’organisation fonctionnelle et spatiale de la chromatine pendant le développement des lymphocytes T

Ben Zouari, Yousra 03 May 2018 (has links)
Malgré les vastes études démontrant le rôle de la conformation génomique dans le contrôle transcriptionnel, de nombreuses questions restent en suspens, et en particulier, comment ces structures chromatiniennes sont formées et maintenues. Pour mieux comprendre les liens entre l’état de la chromatine au niveau des éléments régulateurs, la topologie de la chromatine et la régulation de la transcription, nous utilisons la technique CHi-C basée sur la technologie de capture de la conformation chromosomique (3C). En utilisant deux stratégies de capture ciblant deux différentes structure chromatiniennes (les boucles chromatiniennes et les domaines topologiques), nous avons pu décrypter la structure chromatinienne associée à la différenciation des thymocytes et mettre en évidence des mécanismes de contrôle transcriptionnel de certains gènes. Les expériences futures de l’équipe vont consister à examiner les facteurs (hors transcription) qui peuvent influencer l'architecture de la chromatine, comme la liaison différentielle des CTCF, et comment ces facteurs peuvent être coordonnés par le contrôle de transcription. / Chromosome folding takes place at different hierarchical levels, with various topologies correlated with control of gene expression. Despite the large number of recent studies describing chromatin topologies and their correlations with gene activity, many questions remain, in particular how these topologies are formed and maintained. To understand better the link between epigenetic marks, chromatin topology and transcriptional control, we use CHi-C technique based on the chromosome conformation capture (3C) method. By using two capture strategies targeting two different chromatin structures (chromatin loops and topological domains), we have been able to decipher the chromatin structure associated with thymocyte differentiation and to highlight mechanisms for the transcriptional control of certain genes. Future experiments of the lab will examine mechanisms other than transcription which may influence chromatin architecture, such as differential binding of CTCF, and how these may interplay with transcriptional control and chromatin architecture.

Page generated in 0.0876 seconds