• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification à l'échelle du génome des séquences d'ADN liés à la matrice nucléaire et leurs relations avec la réplication de l’ADN / Genome scale identification of the DNA sequences attached to the Nuclear Matrix.Implications for Genome organization and the regulation of DNA replication

Velilla, Fabien 13 December 2012 (has links)
Les chromosomes sont organisés en plusieurs niveaux hiérarchiques de repliements de la chromatine. Cette organisation spatiale de la chromatine dans le noyau a été impliquée dans la régulation de nombreux processus cellulaires comme la réplication ou la transcription. En effet, différentes expériences suggèrent que la chromatine est organisée en boucles, dont les bases seraient maintenues attachées ensemble, formant une structure qui serait un soutien structurel de la chromatine.Mon projet de thèse a visé à identifier les séquences d'ADN constituant la base de ces boucles de la chromatine par hybridation sur puces. Notre étude a été réalisée sur des MEF asynchrones et synchronisées en G0/G1 afin d'établir la dynamique des MARs au cours du cycle cellulaire.Nos résultats montrent que les MARs constituent des grands domaines, qui sont associés de façon significative avec les domaines d'ADN liées à la Lamine B1 et les domaines tardifs du timing de réplication. L'analyse des MARs ayant été réalisée sur des MEFs synchronisées en G0, les domaines de timing seraient donc déjà définis en G0/G1. L'analyse de plusieurs marques des histones suggère que les MARs sont associées à la chromatine transcriptionnellement inactive. En parallèle, nous avons réalisé une analyse protéomique de la matrice. Celle-ci a permis de valider notre approche expérimentale mais nous a aussi donné l'opportunité de caractériser la matrice nucléaire d'un point de vue protéique.L'ensemble de nos résultats révèle que les séquences d'ADN liées à la matrice nucléaire constituent une zone de répression, tant au niveau transcriptionnel que réplicatif. / Chromosomes are organised into several hierarchical levels of chromatin compaction. This spatial organization of chromatin in the nucleus has been involved in regulating many cellular processes such as DNA replication and transcription. Indeed, different experiments suggest that chromatin is organized in loops, whose bases are kept attached together, forming a structure, often called the nuclear matrix, acting as a structural support of the chromatin. My project was to identify the DNA sequences that belong to the bases of these chromatin loops. Matrix-attached regions (MARs) were mapped by hybridization on microarrays. This study was performed on asynchronous as well as G0/G1-phase synchronized MEFs to establish the dynamics of MARs during the cell cycle. MARs were found in megabase-sized domains, with sequences significantly related to previously-published Lamin B1 associated domains and replication timing domains. Since our analysis of MARs was performed on G0-synchronized MEFs, our data strongly suggest that the timing domains might already be defined in G0/G1. Analysis of several histone marks suggested that MARs were associated with transcriptionally-repressed chromatin. In parallel, we also performed a proteomic analysis of our matrix preparations, and found known "matrix-attached" proteins, thus validating our experimental approach, plus other components that permitted a better characterization of the nuclear matrix. Taken together, our results show that DNA sequences bound to the nuclear matrix constitute a repressive zone, at the transcription and replication levels.
2

The functional and spatial organization of chromatin during Thymocyte development / L’organisation fonctionnelle et spatiale de la chromatine pendant le développement des lymphocytes T

Ben Zouari, Yousra 03 May 2018 (has links)
Malgré les vastes études démontrant le rôle de la conformation génomique dans le contrôle transcriptionnel, de nombreuses questions restent en suspens, et en particulier, comment ces structures chromatiniennes sont formées et maintenues. Pour mieux comprendre les liens entre l’état de la chromatine au niveau des éléments régulateurs, la topologie de la chromatine et la régulation de la transcription, nous utilisons la technique CHi-C basée sur la technologie de capture de la conformation chromosomique (3C). En utilisant deux stratégies de capture ciblant deux différentes structure chromatiniennes (les boucles chromatiniennes et les domaines topologiques), nous avons pu décrypter la structure chromatinienne associée à la différenciation des thymocytes et mettre en évidence des mécanismes de contrôle transcriptionnel de certains gènes. Les expériences futures de l’équipe vont consister à examiner les facteurs (hors transcription) qui peuvent influencer l'architecture de la chromatine, comme la liaison différentielle des CTCF, et comment ces facteurs peuvent être coordonnés par le contrôle de transcription. / Chromosome folding takes place at different hierarchical levels, with various topologies correlated with control of gene expression. Despite the large number of recent studies describing chromatin topologies and their correlations with gene activity, many questions remain, in particular how these topologies are formed and maintained. To understand better the link between epigenetic marks, chromatin topology and transcriptional control, we use CHi-C technique based on the chromosome conformation capture (3C) method. By using two capture strategies targeting two different chromatin structures (chromatin loops and topological domains), we have been able to decipher the chromatin structure associated with thymocyte differentiation and to highlight mechanisms for the transcriptional control of certain genes. Future experiments of the lab will examine mechanisms other than transcription which may influence chromatin architecture, such as differential binding of CTCF, and how these may interplay with transcriptional control and chromatin architecture.

Page generated in 0.0788 seconds