• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification à l'échelle du génome des séquences d'ADN liés à la matrice nucléaire et leurs relations avec la réplication de l’ADN / Genome scale identification of the DNA sequences attached to the Nuclear Matrix.Implications for Genome organization and the regulation of DNA replication

Velilla, Fabien 13 December 2012 (has links)
Les chromosomes sont organisés en plusieurs niveaux hiérarchiques de repliements de la chromatine. Cette organisation spatiale de la chromatine dans le noyau a été impliquée dans la régulation de nombreux processus cellulaires comme la réplication ou la transcription. En effet, différentes expériences suggèrent que la chromatine est organisée en boucles, dont les bases seraient maintenues attachées ensemble, formant une structure qui serait un soutien structurel de la chromatine.Mon projet de thèse a visé à identifier les séquences d'ADN constituant la base de ces boucles de la chromatine par hybridation sur puces. Notre étude a été réalisée sur des MEF asynchrones et synchronisées en G0/G1 afin d'établir la dynamique des MARs au cours du cycle cellulaire.Nos résultats montrent que les MARs constituent des grands domaines, qui sont associés de façon significative avec les domaines d'ADN liées à la Lamine B1 et les domaines tardifs du timing de réplication. L'analyse des MARs ayant été réalisée sur des MEFs synchronisées en G0, les domaines de timing seraient donc déjà définis en G0/G1. L'analyse de plusieurs marques des histones suggère que les MARs sont associées à la chromatine transcriptionnellement inactive. En parallèle, nous avons réalisé une analyse protéomique de la matrice. Celle-ci a permis de valider notre approche expérimentale mais nous a aussi donné l'opportunité de caractériser la matrice nucléaire d'un point de vue protéique.L'ensemble de nos résultats révèle que les séquences d'ADN liées à la matrice nucléaire constituent une zone de répression, tant au niveau transcriptionnel que réplicatif. / Chromosomes are organised into several hierarchical levels of chromatin compaction. This spatial organization of chromatin in the nucleus has been involved in regulating many cellular processes such as DNA replication and transcription. Indeed, different experiments suggest that chromatin is organized in loops, whose bases are kept attached together, forming a structure, often called the nuclear matrix, acting as a structural support of the chromatin. My project was to identify the DNA sequences that belong to the bases of these chromatin loops. Matrix-attached regions (MARs) were mapped by hybridization on microarrays. This study was performed on asynchronous as well as G0/G1-phase synchronized MEFs to establish the dynamics of MARs during the cell cycle. MARs were found in megabase-sized domains, with sequences significantly related to previously-published Lamin B1 associated domains and replication timing domains. Since our analysis of MARs was performed on G0-synchronized MEFs, our data strongly suggest that the timing domains might already be defined in G0/G1. Analysis of several histone marks suggested that MARs were associated with transcriptionally-repressed chromatin. In parallel, we also performed a proteomic analysis of our matrix preparations, and found known "matrix-attached" proteins, thus validating our experimental approach, plus other components that permitted a better characterization of the nuclear matrix. Taken together, our results show that DNA sequences bound to the nuclear matrix constitute a repressive zone, at the transcription and replication levels.
2

Conséquences d'un défaut de licensing des origines de réplication sur la stabilité du génome chez la levure Saccharomyces cerevisiae / Replication licensing defects and consequences on genome stability in the yeast Saccharomyces cerevisiae

Petit, Julie 16 December 2011 (has links)
L'instabilité chromosomique, marque des cellules tumorales, peut trouver sa source dans un défaut d'initiation de la réplication. Ceci a été illustré chez la levure Saccharomyces cerevisiae et concorde avec l'observation de mutations de régulateurs de la transition G1/S dans un grand nombre de tumeurs. Toutefois, les mécanismes par lesquels cette instabilité survient n'ont pas encore été clairement définis. Pour résoudre cette question, nous avons utilisé le mutant de levure cdc6-1 où la formation des complexes pré-réplicatifs est graduellement affectée avec l'augmentation de la température. Nous avons mis en évidence que l'allongement de la durée de la réplication qui en suit induit des cassures de l'ADN (DSB) seulement à l'entrée en mitose. Par combinaisons de mutants, nous avons vu que la condensation des chromosomes est en partie responsable de ces DSB. Ces DSB sont signalées à la cellule via la protéine Rad9, protéine adaptatrice du checkpoint de dommages à l'ADN. De façon concordante, nous avons observé une activation de la protéine effectrice de ce checkpoint Rad53 à l'entrée en mitose. La viabilité des cellules cdc6-1 repose sur les protéines de checkpoint Chk1 et Rad53 ainsi que sur la présence de cohésines et des topoisomérases Top2 et Top3. Selon nous, la réplication prolongée par diminution du nombre d'origines n'est pas détectée par les cellules comme un stress réplicatif. Lors de l'entrée en mitose, la condensation des chromosomes transformerait les fourches de réplication en structures reconnues et clivées par les nucléases Mus81-Mms4 et Yen1, qui sont activées en mitose, dirigeant ces régions sous-répliquées vers la réparation par recombinaison. Ce sont les coupures induites en mitose, non la progression des fourches, qui activent le checkpoint. Nous proposons que la sous-réplication de segments d'ADN consécutive à un défaut de licensing des origines favorise la recombinaison non homologue et génère l'instabilité chromosomique, à l'image des sites fragiles communs qui sont le siège de remaniements récurrents lors de la cancérogenèse. / Chromosome instability (CIN), a hallmark of cancer cells, can take its roots in the G1 phase of the cell cycle, when replication origins are licensed. This has been illustrated in the yeast Saccharomyces cerevisiae and is consistent with the fact that a vast number of tumors presents mutations in G1/S transition regulators. However the mechanisms by which this instability occurs are still not well established. Using the yeast cdc6-1 mutant in which preRC formation can be decreased gradually with temperature, we show that cells replicating from fewer origins undergo massive DNA double-strand break (DSB) formation in mitosis. Blocking mitotic entry by Swe1 overexpression or Clb1-4 depletion, and inactivation of Cdc5 (Polo) both suppress DSB formation in cdc6-1 cells, demonstrating that DSBs do not stem from collapsed forks but are actively induced during mitosis. DSB formation is dependent on chromosome condensation and the Mus81-Yen1 structure-specific endonucleases. These DSBs then trigger the Rad9 DNA damage checkpoint. Accordingly, Rad53 phosphorylation is detected only after entry into mitosis. We propose that cells replicating their DNA from fewer origins enter mitosis undetected, then condense their chromosomes and cleave unreplicated regions by Mus81-Yen1 for repair by recombination. The viability of cdc6-1 cells at semi-permissive temperature relies on Chk1 and Rad53, as well as on cohesins and topoisomerases Top2 and Top3. Cleavage of under replicated DNA segments in mitosis may favor non-homologous repair pathways leading to chromosome rearrangements, as seen for common fragile sites that co-localize with recurrent breakpoints in cancer.
3

Genome-wide identification and characterization of C. elegans DNA replication origins during development / Identification et caractérisation sur tout le génome des origines de réplication de l'ADN chez C. elegans au cours du développement

Rodriguez Martinez, Marta 16 December 2013 (has links)
La réplication de l'ADN chez les eucaryotes commence lorsque le complexe de reconnaissance de l'origine (ORC) se lie à l'ADN puis recrute les facteurs nécessaires à la duplication du génome. Bien que les mécanismes biochimiques et les facteurs impliqués dans l'initiation de la réplication semblent être conservés, les séquences d'ADN (les origines de réplication) sur lesquelles ces événements ont lieu ne le sont pas. L'ensemble des données connues suggèrent fortement un rôle prépondérant de la mise en place des origines de réplication dans la structuration du génome et l'organisation des autres processus cellulaires lors de la différenciation. Comprendre la coordination de ces processus in vivo et au cours du développement est primordial pour déchiffrer la régulation cellulaire dans son contexte réel. Le modèle du développement embryonnaire du nématode C.elegans constitue un outil génétique de premier choix pour l'étude de la mise en place des origines de réplication au cours du développement. Au cours de ma thèse, j'ai dû premièrement développer une technique de culture de C.elegans synchronisée en grosse échelle, afin d'obtenir le matériel nécessaire pour identifier les origines de réplication. Cette technique nous a aussi permis de caractériser, pour la première fois, la croissance synchronisée en bioréacteur d'un métazoaire. D'autre part, l'étude des origines de réplication a révélé une distribution hétérogène des origines de réplication dans les chromosomes qui corrèle avec des domaines de certaines marques épigénétiques, une corrélation avec des séquences d'ADN capables de former des structures cruciformes de l'ADN, ainsi comme une confirmation de la corrélation avec la transcription. Nous avons aussi vu que la corrélation de origines de réplication avec des CpG, est fortement établie après le début de la gastrulation, et que l'association avec des éléments fonctionnels spécifiques du génome, comme les operons, est perdu une fois la transcription embryonnaire deviens nécessaire après la gastrulation. L'ensemble de résultats suggèrent fortement un changement dans l'organisation des origines de réplication après gastrulation, qui corrèle avec des éléments fonctionnels du génome. / Eukaryotic DNA replication begins when the origin recognition complexes (ORC) binds to DNA and recruits the necessary factors for genome duplication. Even though, biochemical mechanisms as well as the factors involved seem to be well conserved, the DNA sequences (replication origins) where these events take place are not. The known data strongly suggest that replication origins establishment may play an important role in genome structuring as well as in the organization of other cellular processes during cell differentiation. To understand how these processes are coordinated in vivo and during development, is essential for deciphering cellular regulation in its real context. C.elegans embryonic development is a genetic tool of first choice for studying replication origins in vivo and their correlation with other genome features and processes during development.During my thesis and with the aim of obtaining enough material for the replication origins identification method, I've had to develop a new technique of synchronized high-scale liquid culture of the nematode C.elegans. This technique has allowed the characterization for the first time of the synchronize growth of a metazoan in bioreactor. Furthermore, the study of replication origins has revealed a heterogenic distribution of replication origins along chromosomes that correlates with specific epigenetic marks. Moreover, replication origins are strongly associated with specific DNA structures able to form cruciforms, and we have confirmed the correlation of replication origins and transcription. This study also show that the association of replication origins with CpGs is greatly increased after gastrulation, and that the association with some genetic elements, such as operons, is reduced after gastrulation begins. Taken together these results show a change of replication origins before and after cell differentiation during embryonic development that correlate with functional genome elements.
4

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.

Page generated in 0.1331 seconds