• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Βιοπληροφορική ανάλυση του γονιδιώματος του μήκυτα Schizosaccharomyces pombe προς εξαγωγή χαρακτηριστικών και πρόβλεψη των αφετηριών αντιγραφής του

Δημόπουλος, Σωτήριος 12 February 2008 (has links)
Η αντιγραφή του DNA αποτελεί μια θεμελιώδη διαδικασία για κάθε μορφή ζωής. Στους ευκαρυωτικούς οργανισμούς, εξαιτίας του μεγάλου μεγέθους του γονιδιώματός τους, η αντιγραφή του DNA εκκινά από πολλαπλά σημεία προκειμένου να ολοκληρωθεί σε εύλογο χρονικό διάστημα. Οι περιοχές αυτές ονομάζονται αφετηρίες αντιγραφής και η μελέτη τους είναι σημαντική αφού είναι άρρηκτα συνδεδεμένες με την ακριβή ολοκλήρωση της αντιγραφής του DNA, διαδικασία ζωτικής σημασίας για το κύτταρο. Ενώ η λειτουργία των αφετηριών αντιγραφής είναι λίγο πολύ γνωστή, οι ακριβείς γονιδιωματικές δομές που συντελούν στο μηχανισμό επιλογής τους παραμένουν άγνωστες. Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη, σε επίπεδο ολόκληρου του γονιδιώματος, των γονιδιωματικών περιοχών που αποτελούν αφετηρίες αντιγραφής του DNA και η εξαγωγή των χαρακτηριστικών που καθορίζουν την ιδιότητά τους να λειτουργούν ως αφετηρίες αντιγραφής του DNA. Ο ζυμομύκητας Schizosachharomyces pombe αποτελεί ιδανικό οργανισμό για τη μελέτη της διαδικασίας αντιγραφής του DNA, κυρίως εξαιτίας της ομοιότητας που διαθέτει με τους ανώτερους ευκαρυωτικούς οργανισμούς. Η παρούσα βιοπληροφορική ανάλυση εκτελεί επεξεργασία ολόκληρου του γονιδιώματος του S. pombe. Βασίζεται σε δύο πολύ πρόσφατα, αλλά διαφορετικών ερευνητικών ομάδων, πειράματα μικροσυστοιχειών στα οποία αναγνωρίστηκαν οι αφετηρίες αντιγραφής σε όλο το γονιδίωμα του ζυμομύκητα (Heichinger et al, 2006 και Hayashi et al, 2007). Συνδυάζοντας τα πειράματα αυτά, καταφέραμε να διαχωρίσουμε το σύνολο των διαγονιδιακών περιοχών του S. pombe σε κατηγορίες ανάλογα με την ικανότητα τους να εκκινούν την αντιγραφή του DNA. Έπειτα, ορίσαμε 3 νέα γονιδιωματικά παραμετρικά χαρακτηριστικά και μαζί με τη δημιουργία ενός συστήματος βελτιστοποίησης παραμέτρων, εξετάσαμε πώς πρέπει να διαμορφωθούν οι διάφορες παράμετροί τους ώστε να δημιουργούνται δομές που παρατηρούνται μονάχα στις αφετηρίες αντιγραφής. Για συγκεκριμένους συνδυασμούς παραμέτρων, η ταξινόμηση των διαγονιδιακών περιοχών με βάση τα καινούρια χαρακτηριστικά αγγίζει το 90% σε ευαισθησία, και το 77% σε θετικό προγνωστικό δείκτη. Επομένως, τα νέα γονιδιωματικά χαρακτηριστικά αφορούν δομές που παρατηρούνται σχεδόν εξολοκλήρου στις αφετηρίες αντιγραφής και σπάνια στις υπόλοιπες διαγονιδιακές περιοχές, παρέχοντας έτσι τον κύριο μηχανισμό επιλογής των αφετηριών αντιγραφής του DNA στο γονιδίωμα του S. pombe. / DNA replication constitutes an essential process for every life form. In eukaryotic organisms which are characterized by large genome size, DNA replication initiates from multiple points along the genome, so that it is completed within the allocated time. These genomic sites are called replication origins and their study is important as their selection and timely activation is pivotal for the maintenance of genomic integrity. Despite extensive studies from several laboratories, the features that specify an origin remain elusive, especially in higher eukaryotes. The purpose of this thesis is a genome-wide study of the genomic areas that function as replication origins and the extraction of the genomic features that determine this activity. Schizosachharomyces pombe (S. pombe, fission yeast) is an ideal organism for the study of the DNA replication procedure as it shares several common features with higher eukaryotic organisms. In this bioinformatics study, a genome-wide analysis of the S. pombe genome is performed. It is based on two very recent reports from different teams using microarray experiments, in which genome-wide identification of the S. pombe replication origins took place (Heichinger et al, 2006 and Hayashi et al, 2007). Combining these two experiments we managed to separate the fission yeast inter-genic regions in categories depending on their ability to function as replication origins. We then defined 3 new parametric genomic features, created a framework for solving the parameter estimation problem and analyzed how these parameters should be defined so that the specified structures are solely observed in genomic sites that function as replication origins. We observed that for certain parametric combinations, the classification of the intergenic regions as replication origins and as intergenic regions showing no origin activity reached 90% in sensitivity and 77% in positive predictive value. Therefore, the new genomic features identified through this study represent structures that are almost always and solely observed in intergenic regions showing replication activity, and are likely to provide the main genomic mechanism of origin selection in the fission yeast genome.
2

Single Molecule Approaches to Mapping DNA Replication Origins

Liu, Victor 26 December 2017 (has links)
DNA replication is a fundamental process that is primarily regulated at the initiation step. In higher eukaryotes, the location and properties of replication origins are not well understood. Existing genome-wide approaches to map origins—such as nascent strand abundance mapping, Okazaki fragment mapping, or chromatin immunoprecipitation-based assays—average the behavior of a population of cells. However, due to cell-to-cell variability in origin usage, single molecule techniques are necessary to investigate the actual behavior of a cell. Here, I investigate the feasibility of using three single molecule, genome-wide technologies to map origins of replication. The Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing technology, the BioNano Genomics Irys optical mapping technology, and the Oxford Nanopore Technologies MinION nanopore sequencing technology are promising approaches that can advance our understanding of DNA replication in higher eukaryotes.
3

Conséquences d'un défaut de licensing des origines de réplication sur la stabilité du génome chez la levure Saccharomyces cerevisiae / Replication licensing defects and consequences on genome stability in the yeast Saccharomyces cerevisiae

Petit, Julie 16 December 2011 (has links)
L'instabilité chromosomique, marque des cellules tumorales, peut trouver sa source dans un défaut d'initiation de la réplication. Ceci a été illustré chez la levure Saccharomyces cerevisiae et concorde avec l'observation de mutations de régulateurs de la transition G1/S dans un grand nombre de tumeurs. Toutefois, les mécanismes par lesquels cette instabilité survient n'ont pas encore été clairement définis. Pour résoudre cette question, nous avons utilisé le mutant de levure cdc6-1 où la formation des complexes pré-réplicatifs est graduellement affectée avec l'augmentation de la température. Nous avons mis en évidence que l'allongement de la durée de la réplication qui en suit induit des cassures de l'ADN (DSB) seulement à l'entrée en mitose. Par combinaisons de mutants, nous avons vu que la condensation des chromosomes est en partie responsable de ces DSB. Ces DSB sont signalées à la cellule via la protéine Rad9, protéine adaptatrice du checkpoint de dommages à l'ADN. De façon concordante, nous avons observé une activation de la protéine effectrice de ce checkpoint Rad53 à l'entrée en mitose. La viabilité des cellules cdc6-1 repose sur les protéines de checkpoint Chk1 et Rad53 ainsi que sur la présence de cohésines et des topoisomérases Top2 et Top3. Selon nous, la réplication prolongée par diminution du nombre d'origines n'est pas détectée par les cellules comme un stress réplicatif. Lors de l'entrée en mitose, la condensation des chromosomes transformerait les fourches de réplication en structures reconnues et clivées par les nucléases Mus81-Mms4 et Yen1, qui sont activées en mitose, dirigeant ces régions sous-répliquées vers la réparation par recombinaison. Ce sont les coupures induites en mitose, non la progression des fourches, qui activent le checkpoint. Nous proposons que la sous-réplication de segments d'ADN consécutive à un défaut de licensing des origines favorise la recombinaison non homologue et génère l'instabilité chromosomique, à l'image des sites fragiles communs qui sont le siège de remaniements récurrents lors de la cancérogenèse. / Chromosome instability (CIN), a hallmark of cancer cells, can take its roots in the G1 phase of the cell cycle, when replication origins are licensed. This has been illustrated in the yeast Saccharomyces cerevisiae and is consistent with the fact that a vast number of tumors presents mutations in G1/S transition regulators. However the mechanisms by which this instability occurs are still not well established. Using the yeast cdc6-1 mutant in which preRC formation can be decreased gradually with temperature, we show that cells replicating from fewer origins undergo massive DNA double-strand break (DSB) formation in mitosis. Blocking mitotic entry by Swe1 overexpression or Clb1-4 depletion, and inactivation of Cdc5 (Polo) both suppress DSB formation in cdc6-1 cells, demonstrating that DSBs do not stem from collapsed forks but are actively induced during mitosis. DSB formation is dependent on chromosome condensation and the Mus81-Yen1 structure-specific endonucleases. These DSBs then trigger the Rad9 DNA damage checkpoint. Accordingly, Rad53 phosphorylation is detected only after entry into mitosis. We propose that cells replicating their DNA from fewer origins enter mitosis undetected, then condense their chromosomes and cleave unreplicated regions by Mus81-Yen1 for repair by recombination. The viability of cdc6-1 cells at semi-permissive temperature relies on Chk1 and Rad53, as well as on cohesins and topoisomerases Top2 and Top3. Cleavage of under replicated DNA segments in mitosis may favor non-homologous repair pathways leading to chromosome rearrangements, as seen for common fragile sites that co-localize with recurrent breakpoints in cancer.
4

Genome-wide identification and characterization of C. elegans DNA replication origins during development / Identification et caractérisation sur tout le génome des origines de réplication de l'ADN chez C. elegans au cours du développement

Rodriguez Martinez, Marta 16 December 2013 (has links)
La réplication de l'ADN chez les eucaryotes commence lorsque le complexe de reconnaissance de l'origine (ORC) se lie à l'ADN puis recrute les facteurs nécessaires à la duplication du génome. Bien que les mécanismes biochimiques et les facteurs impliqués dans l'initiation de la réplication semblent être conservés, les séquences d'ADN (les origines de réplication) sur lesquelles ces événements ont lieu ne le sont pas. L'ensemble des données connues suggèrent fortement un rôle prépondérant de la mise en place des origines de réplication dans la structuration du génome et l'organisation des autres processus cellulaires lors de la différenciation. Comprendre la coordination de ces processus in vivo et au cours du développement est primordial pour déchiffrer la régulation cellulaire dans son contexte réel. Le modèle du développement embryonnaire du nématode C.elegans constitue un outil génétique de premier choix pour l'étude de la mise en place des origines de réplication au cours du développement. Au cours de ma thèse, j'ai dû premièrement développer une technique de culture de C.elegans synchronisée en grosse échelle, afin d'obtenir le matériel nécessaire pour identifier les origines de réplication. Cette technique nous a aussi permis de caractériser, pour la première fois, la croissance synchronisée en bioréacteur d'un métazoaire. D'autre part, l'étude des origines de réplication a révélé une distribution hétérogène des origines de réplication dans les chromosomes qui corrèle avec des domaines de certaines marques épigénétiques, une corrélation avec des séquences d'ADN capables de former des structures cruciformes de l'ADN, ainsi comme une confirmation de la corrélation avec la transcription. Nous avons aussi vu que la corrélation de origines de réplication avec des CpG, est fortement établie après le début de la gastrulation, et que l'association avec des éléments fonctionnels spécifiques du génome, comme les operons, est perdu une fois la transcription embryonnaire deviens nécessaire après la gastrulation. L'ensemble de résultats suggèrent fortement un changement dans l'organisation des origines de réplication après gastrulation, qui corrèle avec des éléments fonctionnels du génome. / Eukaryotic DNA replication begins when the origin recognition complexes (ORC) binds to DNA and recruits the necessary factors for genome duplication. Even though, biochemical mechanisms as well as the factors involved seem to be well conserved, the DNA sequences (replication origins) where these events take place are not. The known data strongly suggest that replication origins establishment may play an important role in genome structuring as well as in the organization of other cellular processes during cell differentiation. To understand how these processes are coordinated in vivo and during development, is essential for deciphering cellular regulation in its real context. C.elegans embryonic development is a genetic tool of first choice for studying replication origins in vivo and their correlation with other genome features and processes during development.During my thesis and with the aim of obtaining enough material for the replication origins identification method, I've had to develop a new technique of synchronized high-scale liquid culture of the nematode C.elegans. This technique has allowed the characterization for the first time of the synchronize growth of a metazoan in bioreactor. Furthermore, the study of replication origins has revealed a heterogenic distribution of replication origins along chromosomes that correlates with specific epigenetic marks. Moreover, replication origins are strongly associated with specific DNA structures able to form cruciforms, and we have confirmed the correlation of replication origins and transcription. This study also show that the association of replication origins with CpGs is greatly increased after gastrulation, and that the association with some genetic elements, such as operons, is reduced after gastrulation begins. Taken together these results show a change of replication origins before and after cell differentiation during embryonic development that correlate with functional genome elements.
5

Identification de nouveaux mécanismes de régulation temporelle des origines de réplication dans les cellules humaines / Identification of new mechanisms of temporal regulation of DNA replication origins in human cells

Guitton-Sert, Laure 11 December 2015 (has links)
La duplication de l'ADN au cours de la phase S est initiée à partir de l'activation de plusieurs dizaines de milliers d'origines de réplication. La mise en place des origines a lieu au cours de la phase G1 sous la forme de complexe de pré-réplication (pré-RC) et leur activation est orchestrée par un programme spatio-temporel. La régulation spatiale détermine les origines qui seront activées et la régulation temporelle, ou timing de réplication, détermine le moment de leur activation. En effet, toutes ces origines ne sont pas activées en même temps durant la phase S : certaines origines seront activées en début de phase S, d'autre en milieu, ou d'autre à la fin. Ce programme est établi en tout début de phase G1, au " point de décision du timing ". C'est un programme très robuste qui signe l'identité d'une cellule, son état de différenciation et le type cellulaire à laquelle elle appartient. Il a aussi été montré qu'il est altéré dans des situations pathologiques, en particulier le cancer, sans qu'on ne comprenne très bien les raisons mécanistiques. De manière générale, les mécanismes moléculaires qui régulent le timing de réplication sont méconnus. Le premier volet de ma thèse a permis l'identification d'un nouveau régulateur du timing de réplication : il s'agit de l'ADN polymérase spécialisée Thêta. Recrutée à la chromatine très tôt en phase G1, elle interagit avec des composants du pré-RC, et régule le recrutement des hélicases réplicatives à la chromatine. Enfin, sa déplétion ou sa surexpression entraîne une modification du timing de réplication à l'échelle du génome. Dans la deuxième partie de ma thèse, j'ai exploré les mécanismes qui régulent ce programme temporel d'activation des origines suite à un stress réplicatif. J'ai identifié un mécanisme de régulation transgénérationnel inédit : la modification du timing de réplication de domaines chromosomiques ayant subi un stress réplicatif au cycle cellulaire précédent. Des cellules-filles issues d'une cellule ayant subi des problèmes de réplication dans des domaines fragiles (riches en AT, et donc potentiellement structurés, et pauvres en origines) présentent un timing plus précoce de l'activation des origines au niveau de ces domaines. Ce nouveau processus biologique d'adaptation est particulièrement intéressant dans un contexte tumoral de haut stress réplicatif chronique car ce pourrait être un moyen pour la cellule tumorale de survivre à son propre stress réplicatif mais aussi aux thérapies antitumorales qui sont nombreuses à cibler la réplication de l'ADN. / DNA duplication in S phase starts from thousands of initiation sites called DNA replication origins. These replication origins are set in G1 as pre-replication complexes (pre-RC) and fired in S phase following a spatio-temporal program of activation. This program determines which origins will be fired and when. Indeed, all the origins are not fired in the same time and we can distinguish early, middle and late replication origins. This temporal regulation is called "replication timing" and is determined at the "timing decision point" (TDP) in early G1. It's a robust program, which participates to the definition of cell identity, in term of differentiation state or cell type. However, the precise molecular mechanisms involved are poorly understood. Defective timing program has been evidenced in pathological contexts, in particular in cancers, but the mechanisms of this deregulation remain unclear. In the first part of my PhD, I contributed to the discovery of a new regulator of the origin timing program: the specialized DNA polymerase Theta (Pol Theta). Pol Theta is loaded onto chromatin in early G1, coimmunoprecipitates with pre-RC components and modulates the recruitment of Mcm helicases at TDP. Moreover, depletion or overexpression of Pol Theta modifies the timing of replication at a fraction of chromosomal domains. The second part of my work aimed at exploring the mechanisms that regulates replication timing after a replicative stress. I identified a totally new transgenerational adaptive mechanism of DNA replication timing regulation: the modification of the timing of origin activation at chromosomal domains that have suffered from a replicative stress during the previous cell cycle. Daughter cells from a cell that has experienced replication stress at particular domains (late replicating domains, AT rich so they can form structured DNA, and poor in origin density) shows advanced origin activation within these regions. This new biological process in response to replicative stress could be of particular interest in the context of cancer since, tumor cells are characterized by high level of intrinsic chronic replicative stress. This new mechanism may favor cancer cell survival despite replication stress, particularly upon treatments with anti-tumor agents that target DNA.
6

Impact de la structure de la chromatine naissante sur la réponse aux stress réplicatifs

Tremblay, Roch 08 1900 (has links)
L’usage de composé chimique causant des dommages à l’ADN en phase S est une stratégie couramment utilisée en chimiothérapie du cancer. Ainsi, l’étude de la réponse cellulaire aux dommages subit en phase S s’avère indispensable afin de mieux comprendre les mécanismes cellulaires sous jacents à la réparation de ces dommages et pour permettre le développement ou l’amélioration de nouvelles stratégies antitumorales. Lors de chaque phase S, les nouvelles histones sont acétylées par des histones acétyltransférases (HAT) et déacétylées en fin de phase S et en début de phase G2, par des histones déacétylases (HDAC). Ce cycle d’acétylation des histones est conservé chez tous les eucaryotes. Chez la levure Saccharomyces cerevisiae, l’acétylation de de la lysine 56 de l’histone H3 (H3K56ac) est une marque des nouvelles histones qui est ajoutée par la HAT Rtt109 et retirée par les sirtuines Hst3 et Hst4, des HDAC de classe III. Lors de l’induction de dommages à l’ADN au cours de la phase S par des agents génotoxiques, une persistance de l’acétylation de H3K56 est observée, ce qui suggère un rôle de l’acétylation de H3K56 dans la réponse aux stress réplicatifs subits en phase S. Notre objectif est de comprendre la base moléculaire des défauts de réparation observés dans les mutants de la voie de l’acétylation de H3K56. Précédemment, nous avons réalisé des cribles chémogénétique au nicotinamide (NAM), un inhibiteur des sirtuines, afin d’identifier des gènes influençant la croissance cellulaire en absence de l’activité des sirtuines. SRS2 a été identifié parmi les gènes importants pour le maintien de la viabilité en absence des sirtuines. Srs2 est une hélicase dont l’une de ses principales fonctions est de retirer les nucléofilaments de Rad51, l’une des principales protéines de la recombinaison homologue, de l’ADN simple brin. À l’inverse, RIF1 fut trouvé parmi les gènes dont la délétion confère une meilleure résistance au NAM. Rif1 est impliqué dans le maintien de la taille des télomères, mais également dans l’inhibition des origines de réplication. Dans cette thèse, je présenterai les résultats d’un crible avec des mutants hétérozygotes diploïdes pour évaluer l’importance des gènes essentiels à la croissance cellulaire en absence des sirtuines. Plusieurs gènes impliqués dans l’initiation de la phase S sont ressortis des deux cribles, ce qui suggère que l’acétylation de H3K56 a une fonction dans le processus de réplication de l’ADN qui a lieu en phase S du cycle cellulaire. Par des méthodes de génétique classique, nous avons validé que l’inactivation de membres du complexe DDK, DBF4 et CDC7, dont la fonction est requise par l’initiation des origines de réplication, sensibilise les cellules à la présence d’acétylation constitutive de H3K56. Nous avons confirmé que l’activité toxique de Rif1 pour la viabilité cellulaire en absence des sirtuines Hst3 et Hst4 est sa fonction répressive des origines de réplication. Nous avons observé que l’activation du point de contrôle intra-S n’expliquait pas la perte de viabilité d’un mutant H3K56 constitutivement acétylé alors que l’activité des origines est compromise. Finalement, nous avons identifié un rôle de l’acétylation de H3K56 dans l’initiation des origines de réplication. La progression dans le cycle cellulaire d’une souche constitutivement acétylée sur H3K56 n’est pas ralentie lorsque le complexe DDK est fonctionnel. Toutefois, des dommages spontanés à l’ADN sont observés au cours de la phase S dans les souches dépourvues des protéines Hst3 et Hst4. Ceci suggère que le stress réplicatif observé dans les mutants de la voie de l’acétylation de H3K56 ne peut être entièrement expliqués par un ralentissement de l’initiation des origines de réplication. Nous avons utilisé un mutant srs2Δ qui présente des dommages spontanés à l’ADN et une très forte sensibilité au NAM afin d’exacerber les problèmes réplicatifs observés dans des mutant constitutivement acétylés sur H3K56. Par des méthodes de génétique classique, nous avons observé que la léthalité synthétique entre l’acétylation constitutive de H3K56 et la perte de SRS2 ne peut pas être renversé par la délétion des membres de la voie canonique de l’acétylation de H3K56 suggérant un rôle important de cette modification dans la réparaiton des dommages à l’ADN. De plus, lors d’une persistance de l’acétylation de H3K56, nous avons constaté que la présence de Rad51 s’avère toxique pour des cellules srs2∆. Ensemble, nos résultats suggèrent un rôle de l’acétylation de H3K56 complémentaire au point de contrôle intra-S pour réguler l’initiation des origines de réplication lors de stress réplicatif. Nos données révèlent des fonctions encore méconnues de l’acétylation de H3K56 ainsi que de nouveaux liens entre la structure de la chromatine et la dynamique de réplication. / The use of chemical compounds causing S-phase damage is a common strategy used in cancer chemotherapy. Thus, the study of the cellular response to S-phase DNA damage is essential to better understand the cellular mechanisms underlying the repair of this damage and to allow the development or improvement of antitumor strategies. During each S-phase, new histones are acetylated by histone acetyltransferases (HATs) and deacetylated at the end of S-phase and at the beginning of G2 phase by histone deacetylases (HDACs). This histone acetylation cycle is conserved in all eukaryotes. In the yeast Saccharomyces cerevisiae, acetylation of lysine 56 of histone H3 (H3K56ac) is a hallmark of new histones that is added by the HAT Rtt109 and removed by sirtuins Hst3 and Hst4, class III HDACs. Upon induction of DNA damage during S-phase by genotoxic agents, persistence of H3K56 acetylation is observed suggesting a role for H3K56 acetylation in the response to replicative stresses. Our goal was to understand the molecular basis of the DNA damage defects observed in H3K56 acetylation pathway mutants. Previously, we performed chemogenetic screens with nicotinamide (NAM), a sirtuin inhibitor, to identify genes that influence cell growth in the absence of sirtuin activity. SRS2 emerged as one of the important genes for maintaining viability in the absence of sirtuins. Srs2 is a helicase whose main function is to remove the nucleofilaments of Rad51, one of the major homologous recombination proteins, from single-stranded DNA. Conversely, RIF1 has emerged as one of the genes whose deletion enhances resistance to NAM. Rif1 is involved in the maintenance of telomere size, but also in the inhibition of replication origins. In this thesis, I will present the results of a screen with diploid heterozygous mutants to assess the importance of genes essential for cell growth in the absence of sirtuins. Several genes involved in S-phase initiation emerged from both screens, suggesting that H3K56 acetylation has a function in the DNA replication process that occurs in the S-phase of the cell cycle. By classical genetic methods, we validated that defective activity of the DDK complex members, DBF4 and CDC7, whose function is required by the initiation of replication origins, sensitize cells in the presence of constitutive H3K56 acetylation. We confirmed that the toxic activity of Rif1 8 for cell viability in the absence of Hst3 and Hst4 sirtuins is its repressive function of the origins of replication. We observed that activation of the intra-S checkpoint did not explain the loss of viability of a constitutively acetylated H3K56 mutant while the activity of the origins is compromised. Finally, we identified a role for H3K56 acetylation in the initiation of replication origins. By classical genetic methods, we also observed that the synthetic lethality between constitutive acetylation of H3K56 and loss of SRS2 cannot be reversed by deletion of members of the canonical H3K56 acetylation pathway. Furthermore, upon persistence of H3K56 acetylation, we found that the presence of Rad51 proves toxic to srs2Δ cells. Taken together, our results reveal previously unknown functions of H3K56 acetylation as well as novel links between chromatin structure and DNA replication dynamics.

Page generated in 0.1109 seconds