• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A high-speed reduced-size adder under left-to-right input arrival

高木, 直史, Takagi, Naofumi 01 1900 (has links)
No description available.
2

Reliable Arithmetic Circuit Design Inspired by SNP Systems

January 2013 (has links)
abstract: ABSTRACT Developing new non-traditional device models is gaining popularity as the silicon-based electrical device approaches its limitation when it scales down. Membrane systems, also called P systems, are a new class of biological computation model inspired by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a certain kind of membrane systems, is inspired by the way the neurons in brain interact using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only perform similar functions but also provide a more promising solution for reliable computation. Two basic neuron types, Low Pass (LP) neurons and High Pass (HP) neurons, are introduced. These two basic types of neurons are capable to build an arbitrary SNP neuron. This leads to the conclusion that these two basic neuron types are Turing complete since SNP systems has been proved Turing complete. These two basic types of neurons are further used as the elements to construct general-purpose arithmetic circuits, such as adder, subtractor and comparator. In this thesis, erroneous behaviors of neurons are discussed. Transmission error (spike loss) is proved to be equivalent to threshold error, which makes threshold error discussion more universal. To improve the reliability, a new structure called motif is proposed. Compared to Triple Modular Redundancy improvement, motif design presents its efficiency and effectiveness in both single neuron and arithmetic circuit analysis. DRAM-based CMOS circuits are used to implement the two basic types of neurons. Functionality of basic type neurons is proved using the SPICE simulations. The motif improved adder and the comparator, as compared to conventional Boolean logic design, are much more reliable with lower leakage, and smaller silicon area. This leads to the conclusion that SNP system could provide a more promising solution for reliable computation than the conventional Boolean logic. / Dissertation/Thesis / M.S. Electrical Engineering 2013
3

Towards a Charcterization of the Symmetries of the Nisan-Wigderson Polynomial Family

Gupta, Nikhil January 2017 (has links) (PDF)
Understanding the structure and complexity of a polynomial family is a fundamental problem of arithmetic circuit complexity. There are various approaches like studying the lower bounds, which deals with nding the smallest circuit required to compute a polynomial, studying the orbit and stabilizer of a polynomial with respect to an invertible transformation etc to do this. We have a rich understanding of some of the well known polynomial families like determinant, permanent, IMM etc. In this thesis we study some of the structural properties of the polyno-mial family called the Nisan-Wigderson polynomial family. This polynomial family is inspired from a well known combinatorial design called Nisan-Wigderson design and is recently used to prove strong lower bounds on some restricted classes of arithmetic circuits ([KSS14],[KLSS14], [KST16]). But unlike determinant, permanent, IMM etc, our understanding of the Nisan-Wigderson polynomial family is inadequate. For example we do not know if this polynomial family is in VP or VNP complete or VNP-intermediate assuming VP 6= VNP, nor do we have an understanding of the complexity of its equivalence test. We hope that the knowledge of some of the inherent properties of Nisan-Wigderson polynomial like group of symmetries and Lie algebra would provide us some insights in this regard. A matrix A 2 GLn(F) is called a symmetry of an n-variate polynomial f if f(A x) = f(x): The set of symmetries of f forms a subgroup of GLn(F), which is also known as group of symmetries of f, denoted Gf . A vector space is attached to Gf to get the complete understanding of the symmetries of f. This vector space is known as the Lie algebra of group of symmetries of f (or Lie algebra of f), represented as gf . Lie algebra of f contributes some elements of Gf , known as continuous symmetries of f. Lie algebra has also been instrumental in designing e cient randomized equivalence tests for some polynomial families like determinant, permanent, IMM etc ([Kay12], [KNST17]). In this work we completely characterize the Lie algebra of the Nisan-Wigderson polynomial family. We show that gNW contains diagonal matrices of a speci c type. The knowledge of gNW not only helps us to completely gure out the continuous symmetries of the Nisan-Wigderson polynomial family, but also gives some crucial insights into the other symmetries of Nisan-Wigderson polynomial (i.e. the discrete symmetries). Thereafter using the Hessian matrix of the Nisan-Wigderson polynomial and the concept of evaluation dimension, we are able to almost completely identify the structure of GNW . In particular we prove that any A 2 GNW is a product of diagonal and permutation matrices of certain kind that we call block-permuted permutation matrix. Finally, we give explicit examples of nontrivial block-permuted permutation matrices using the automorphisms of nite eld that establishes the richness of the discrete symmetries of the Nisan-Wigderson polynomial family.
4

Représentation d'un polynôme par un circuit arithmétique et chaînes additives

Elias, Yara 04 1900 (has links)
Un circuit arithmétique dont les entrées sont des entiers ou une variable x et dont les portes calculent la somme ou le produit représente un polynôme univarié. On assimile la complexité de représentation d'un polynôme par un circuit arithmétique au nombre de portes multiplicatives minimal requis pour cette modélisation. Et l'on cherche à obtenir une borne inférieure à cette complexité, et cela en fonction du degré d du polynôme. A une chaîne additive pour d, correspond un circuit arithmétique pour le monôme de degré d. La conjecture de Strassen prétend que le nombre minimal de portes multiplicatives requis pour représenter un polynôme de degré d est au moins la longueur minimale d'une chaîne additive pour d. La conjecture de Strassen généralisée correspondrait à la même proposition lorsque les portes du circuit arithmétique ont degré entrant g au lieu de 2. Le mémoire consiste d'une part en une généralisation du concept de chaînes additives, et une étude approfondie de leur construction. On s'y intéresse d'autre part aux polynômes qui peuvent être représentés avec très peu de portes multiplicatives (les d-gems). On combine enfin les deux études en lien avec la conjecture de Strassen. On obtient en particulier de nouveaux cas de circuits vérifiant la conjecture. / An arithmetic circuit with inputs among x and the integers which has product gates and addition gates represents a univariate polynomial. We define the complexity of the representation of a polynomial by an arithmetic circuit as the minimal number of product gates required for this modelization. And we seek a lower bound to this complexity, with respect to the degree d of the polynomial. An addition chain for d corresponds to an arithmetic circuit computing the monomial of degree d. Strassen's conjecture states that the minimal number of product gates required to represent a polynomial of degree d is at least the minimal length of an addition chain for d. The generalized Strassen conjecture corresponds to the same statement where the indegree of the gates of the arithmetic circuit is g instead of 2. The thesis consists, on the one hand, of the generalization of the concept of addition chains, and a study of the subject. On the other hand, it is concerned with polynomials which can be represented with very few product gates (d-gems). Both studies related to Strassen's conjecture are combined. In particular, we get new classes of circuits verifying the conjecture.
5

Représentation d'un polynôme par un circuit arithmétique et chaînes additives

Elias, Yara 04 1900 (has links)
Un circuit arithmétique dont les entrées sont des entiers ou une variable x et dont les portes calculent la somme ou le produit représente un polynôme univarié. On assimile la complexité de représentation d'un polynôme par un circuit arithmétique au nombre de portes multiplicatives minimal requis pour cette modélisation. Et l'on cherche à obtenir une borne inférieure à cette complexité, et cela en fonction du degré d du polynôme. A une chaîne additive pour d, correspond un circuit arithmétique pour le monôme de degré d. La conjecture de Strassen prétend que le nombre minimal de portes multiplicatives requis pour représenter un polynôme de degré d est au moins la longueur minimale d'une chaîne additive pour d. La conjecture de Strassen généralisée correspondrait à la même proposition lorsque les portes du circuit arithmétique ont degré entrant g au lieu de 2. Le mémoire consiste d'une part en une généralisation du concept de chaînes additives, et une étude approfondie de leur construction. On s'y intéresse d'autre part aux polynômes qui peuvent être représentés avec très peu de portes multiplicatives (les d-gems). On combine enfin les deux études en lien avec la conjecture de Strassen. On obtient en particulier de nouveaux cas de circuits vérifiant la conjecture. / An arithmetic circuit with inputs among x and the integers which has product gates and addition gates represents a univariate polynomial. We define the complexity of the representation of a polynomial by an arithmetic circuit as the minimal number of product gates required for this modelization. And we seek a lower bound to this complexity, with respect to the degree d of the polynomial. An addition chain for d corresponds to an arithmetic circuit computing the monomial of degree d. Strassen's conjecture states that the minimal number of product gates required to represent a polynomial of degree d is at least the minimal length of an addition chain for d. The generalized Strassen conjecture corresponds to the same statement where the indegree of the gates of the arithmetic circuit is g instead of 2. The thesis consists, on the one hand, of the generalization of the concept of addition chains, and a study of the subject. On the other hand, it is concerned with polynomials which can be represented with very few product gates (d-gems). Both studies related to Strassen's conjecture are combined. In particular, we get new classes of circuits verifying the conjecture.

Page generated in 0.0441 seconds