• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise paramétrica do processo de solidificação de PCM em cápsulas esféricas para uso em sistemas de armazenamento térmico: estudo numérico

SILVA, Nadilson Alves da 31 January 2008 (has links)
Made available in DSpace on 2014-06-12T17:36:04Z (GMT). No. of bitstreams: 2 arquivo2103_1.pdf: 1245091 bytes, checksum: fd9d099c96ebb9b3b8ae518167d8bc6c (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2008 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As tecnologias de armazenamento de energia térmica são utilizadas como um meio de aproveitamento da energia que está disponível em um determinado período de tempo, para utilizá-la posteriormente. Isto só é possível devido à capacidade de manter esta energia armazenada de maneira a evitar perdas e que possa ser recuperada em um período de tempo posterior. Este deslocamento da energia no tempo é importante, pois possibilita o aumento de eficiência energética da planta ou sistema e promove uma utilização mais adequada da energia disponível em algum ponto do processo e que poderia estar sendo desperdiçada se não fosse armazenada. No processo de armazenamento térmico são amplamente utilizados dois métodos: o de armazenamento de energia na forma de calor sensível e o armazenamento de energia na forma de calor latente. A seleção de qual método deve ser utilizado deve ser feita de acordo com alguns critérios, tais como capacidade de armazenamento, dimensões do equipamento de armazenamento, temperaturas de carregamento e descarregamento, variação permissível de temperatura, entre outros. Sabe-se que o conceito de calor latente é mais atraente devido à grande capacidade de armazenamento e as temperaturas constantes durante o carregamento e descarregamento do sistema. Existem diversos tipos de sistemas de armazenamento de energia que utilizam o conceito de calor latente, com características apropriadas para cada aplicação e destinadas à obtenção de máxima eficiência. Entre estes, sistemas com material de mudança de fase encapsulado apresentam algumas vantagens construtivas e operacionais. Uma das principais características de um armazenador de calor latente é o processo de mudança de fase que sofre o material usado para armazenar a energia térmica, de modo que a compreensão do processo de transferência de calor no fenômeno de solidificação/fusão é essencial para avaliar exatamente o desempenho térmico destes equipamentos. Neste trabalho foi estudado o processo de solidificação no interior de cápsulas esféricas com o objetivo de otimizar o processo. O estudo é baseado numa análise paramétrica numérica de forma a investigar quais são as melhores condições de solidificação do material no interior da cápsula. O processo de solidificação dentro das cápsulas é tratado usando um modelo condutivo unidimensional com mudança de fase com condições de contorno convectivas na superfície externa da cápsula. As equações diferenciais resultantes são resolvidas numericamente pelo método de diferenças finitas. O modelo apresentado é validado comparando os seus resultados com dados obtidos experimentalmente, disponíveis na literatura. São avaliados o efeito do tamanho da cápsula, temperatura do fluido de carregamento, velocidade do fluido de carregamento e tipo de material de mudança de fase sobre o tempo de solidificação completa e energia térmica armazenada na cápsula
2

Estudo numérico da mudança de fase de PCMs em cavidades cilíndricas

Estrázulas, Jutaí Juarez 12 June 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-26T16:14:39Z No. of bitstreams: 1 Jutaí Juarez Estrázulas_.pdf: 1716303 bytes, checksum: ac095da5508e03eaab20ab1008f22067 (MD5) / Made available in DSpace on 2015-10-26T16:14:39Z (GMT). No. of bitstreams: 1 Jutaí Juarez Estrázulas_.pdf: 1716303 bytes, checksum: ac095da5508e03eaab20ab1008f22067 (MD5) Previous issue date: 2015-06-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Inúmeras aplicações residenciais, comerciais e industriais voltadas ao gerenciamento térmico tem seus custos operacionais reduzidos quando um sistema de armazenamento de energia térmica é incorporado. Tal tipo de sistema pode, por exemplo, absorver energia térmica oriunda de fonte solar, de reaproveitamento de calor de processo industrial ou mesmo proveniente de energia elétrica (nos horários em que esta é menos onerosa), e liberá-la em um horário em que estas fontes de calor não estejam presentes e em que a energia elétrica, se utilizada, seria mais onerosa.Os PCMs (Phase Change Materials), devido ao seu alto calor latente de fusão, são materiais que representam uma alternativa viável à implementação de sistemas de armazenamento de energia térmica. No entanto, inúmeros PCMs ainda não tiveram suas características e propriedades fluidodinâmicas investigadas suficientemente. Assim, este trabalho apresenta um estudo numérico da mudança de fasede PCMs da família RT,em cavidades cilíndricas, visando o armazenamento térmico de energia através de calor latente (LHTES). O estudo foi realizado através de simulação numérica por CFD, com o software ANSYS Fluent. O modelo numérico adotado é bidimensional e é composto pelas equações da conservação da massa, quantidade de movimento e energia. Além destas, foi utilizada a técnica de modelamento entalpia-porosidade. A malha computacional é do tipo hexaédrica, com refinamento junto às paredes da geometria e na região de interface entre o PCM e o ar. O modelo implementado foi validado com resultados numéricos e experimentais da literatura, obtendo-se bons resultados. Foi avaliado o processo de fusão de cinco diferentes tipos de PCMs (RT 4, RT 35, RT 35HC (alta capacidade), RT 55 e RT 82), cada um deles com três intervalos de temperatura (T=10, 20 e 30 °C).Além disto, para T=10 ºC, os PCMS RT 27, RT 35, RT 35 HC e RT 82 foram testados para cinco diferentes valores de constante C (Mushy Zone), totalizando trinta diferentes situações. Paraos PCMs RT 4, RT 35, RT55 e RT82, aumentando-se o T de 10 oC para 20 oC e de 10 oC para 30 oC, para frações líquidas entre 0,4 e 0,8, a redução média dos tempos de fusão foide, aproximadamente, 55,8% e 71,8% e os incrementos médios no fluxo de calor foram de 63% e 111 %, respectivamente. Para o RT35HC, as reduções médias nos tempos de fusão foram de 51,6% e de 67,8%, para a mesma faixa de fração líquidae mesmos T. O RT35HC, quando comparado com o RT 35, possui calor latente de fusão 41,1% maiore os seus tempos de fusão são entre 100% à 134% superiores, dependendo do T utilizado. / Several residential, commercial and industrial applications focused on thermal management have their operating costs reduced when a thermal energy storage system is incorporated to them. This type of system can provide, can, for example, absorb thermal energy from solar source, heat reuse from industrial process or even from electrical power (during the time this is less expensive) and release it at a time that these heat sources are not present and the electrical power, if used, would be more expensive.The Phase Change Materials (PCMs), due to their high latent heat of fusion, are materials that represent a viable alternative to the implementation of thermal energy storage systems. However, many PCMs have not had their characteristics and fluid dynamics properties sufficiently investigated. Thus, this paper presents a numerical study of RT phase change materials family, inside cylindrical cavities, aiming at the thermal energy storage trough latent heat (LHTES). The study was conducted through a CFD numerical simulation, with ANSYS Fluent software. The numeric model adopted is two-dimensional and is composed by mass conservation, movement amount and energy equations. In addition, the enthalpy-porosity modeling technique was used. The computational mesh is hexaedric, with refinement along the walls of geometry and at the interface area between the PCM and air. The model was validated with numerical and experimental results available in the literature, achieving good results. The fusion process of five different PCMs (RT 4, RT 35, RT 35 HC (high capacity), RT 55 and RT 82) was evaluated, each one of them with three temperature ranges (T= 10, 20 e 30 °C). Furthermore, for T=10 °C, the PCMs RT 27, RT 35, RT 35 HC and RT 82 were tested for five different values of C constant (Mushy Zone) totaling thirty different situations. For PCMs RT 4, RT 35, RT 55 and RT 82, increasing T from 10 oC to 20 oC and from 10 oC to 30 oC, for liquid fraction between 0,4 and 0,8, the average reduction in fusion time were, approximately, 55.8% and 71.8% and the average increase in heat flow were 63% and 111% respectively. For RT 35 HC, the average reductions in fusion time were 51.6% and 67.8% for the same liquid fraction range and same T. The RT 35 HC, when compared to RT 35, has latent heat of fusion 41.1% greater and its fusion times are between 100% to 134% greater, depending on T used.
3

Caracterização de bioPCMS para controle de demanda térmica predial

Lira, Lucas Fernandes de Lima 24 August 2018 (has links)
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018. / Este trabalho apresenta pesquisa pioneira voltada para a redução de consumo energético em edificações utilizando materiais provenientes da flora e fauna brasileira, os bioPCMs. Nos capítulos iniciais, características identificadas como essenciais a um material de mudança de fase são confrontadas contra aquelas encontradas em ácidos graxos e derivados, permitindo o entendimento do potencial destes como alternativa aos materiais tradicionais. Observou-se, nesse momento, que bioPCMs são capazes de atuar de forma semelhante a materiais de mudança de fase tradicionais, porém reduzindo consideravelmente a pegada carbônica associada à sua produção. Há, porém, uma carência local de metodologias e aparatos capazes de identificar possíveis bioPCMs, ponto diretamente abordado pela pesquisa. Desenvolveu-se, assim, uma rede de procedimentos que se inicia pela caracterização do material, que por sua vez é submetido a uma análise de transferência de calor e, finalmente, a uma simulação de operação em condições de uso. A análise das propriedades termo-físicas foi realizada para cinco candidatos, segundo procedimento conhecido como T-history. Os resultados foram satisfatórios, permitindo que parâmetros como calor latente de fusão, calor específico, temperatura de mudança de fase, temperatura de sub-resfriamento e condutividade fossem caracterizados. Identificou-se, ali, o óleo de coco como o material com maior potencial para as aplicações pretendidas. Para o estudo de transferência de calor, optou-se por analisar um caso baseado no problema clássico de Stefan, onde o material é armazenado em um reservatório retangular. Desenvolvidos a partir de técnicas utilizadas por outros autores, como Viskanta, Campbell e Kamkari, a metodologia e aparato experimental apresentados permitiram a observação e caracterização do fronte de fusão e solidificação do material de mudança de fase.Finalmente, o óleo de coco foi inserido em um sistema de carregamento e descarregamento energético que simula condição de operação similar ao encontrado em aplicações de resfriamento noturno em locais de clima tropical de savana. Ao final do processo, observou-se que, apesar de cada estágio anterior ser capaz de cumprir seu propósito individual, seja ele de caracterização do material ou do processo de transferência de calor, apenas ao combinar os resultados que a compreensão plena da aplicabilidade do elemento estudado foi obtida. Por exemplo, normalmente estudos de caracterização limitam-se a definir dados como temperatura de fusão ou calor latente de mudança de fase. Apesar de importante, observou-se que esses dados poderiam levar a problemas de dimensionamento de um sistema contendo ácidos graxos, por desconsiderar o impacto que o sub-resfriamento teria na capacidade e velocidade de armazenamento energético. / In the current thesis, a research on the identification and characterization of phase change materials (PCMs) produced from renewable sources, the bioPCMs, is introduced. The document dedicates its initial chapters to the bibliographic review on the study of PCMs used for building thermal demand control. The characteristics identified as essential to a PCM are compared against those found in fatty acids and derivatives, allowing an understanding of their potential as an alternative to traditional materials. It was observed that bioPCMs are able to act similarly to paraffins. Additionally, bioPCMs can be extracted from pre-existing production chains, as a by-product or as waste, greatly reducing the environmental impact of their adoption. There is, however, a local lack of methodologies and devices capable of identifying possible bioPCMs, a point directly addressed by the research. A chain of procedures was developed that begins with the characterization of the material, which in turn is subjected to a heat transfer analysis and, finally, to a practical simulation of operational conditions. The analysis of the thermo-physical properties was performed for seven candidates, according to a procedure known as T-history. The results were satisfactory, allowing parameters such as enthalpy of fusion, specific heat, melting temperature, sub-cooling temperature and conductivity to be characterized. For the study of heat transfer, a classical Stefan problem, where the material is stored in a rectangular container,was chosen. Based on techniques used by other authors such as Viskanta, Campbell and Kamkari, the developed methodology and experimental apparatus allowed the characterization of the melting and solidification fronts of a non-renewale PCM,the n-eicosane, used as reference, and a bioPCM, the coconut oil. The oil was then inserted into an energy loading and unloading system that simulates night cooling operating conditions.At the end of the process it was observed that, although each stage was able to fulfill its individual purpose, be it characterization of the material or of the heat transfer process, only by combining the results that the full understanding of the material applicability was obtained. For example, typically, characterization studies are limited to defining data such as melting temperature or enthalpy of fusion. Although important, it was observed that these data alone could lead to energy system design issues such as disregarding the impact that sub-cooling would have on the energy storage capacity and response time.
4

Estudo numérico do processo de mudança de fase de PCM em cavidades esféricas

Faistauer, Fábio 16 August 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-12-20T15:48:37Z No. of bitstreams: 1 Fábio Faistauer_.pdf: 2685236 bytes, checksum: 4421428b568b50c93c4b5bc55df13256 (MD5) / Made available in DSpace on 2016-12-20T15:48:37Z (GMT). No. of bitstreams: 1 Fábio Faistauer_.pdf: 2685236 bytes, checksum: 4421428b568b50c93c4b5bc55df13256 (MD5) Previous issue date: 2016-08-16 / FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul / Este trabalho apresenta um estudo numérico do processo de mudança de fase de PCM (Phase Change Material ou Materiais de Troca de Fase) acondicionados em cavidades esféricas. O modelo numérico é bidimensional e composto pelas equações de conservação da massa, da quantidade de movimento, de energia e da fração volumétrica, modeladas através da técnica entalpia-porosidade. A malha computacional é do tipo hexaédrica com refinamentos nas regiões que apresentam os maiores gradientes térmicos e fluidodinâmicos. O modelo numérico foi validado com resultados experimentais e numéricos da literatura. São estudados casos de fusão de PCM RT 35, RT 55 e RT 82 em cavidade esférica com temperatura constante na parede. Os diâmetros das esferas são de 40, 60, 80 e 100 mm e as temperaturas impostas à parede são de 10, 20 e 30°C acima da temperatura de fusão dos PCM. São apresentados resultados de fração líquida e de fluxo de calor resultante dos 36 casos estudados. A pesquisa mostra que PCM com propriedades semelhantes apresentam o mesmo comportamento para fração líquida e fluxo de calor, independentemente de seu ponto de fusão. O aumento da temperatura na parede da esfera é responsável por maiores fluxos de calor e pela diminuição do tempo de obtenção da fração líquida. Comparando as diferenças de temperaturas de 10, 20 e 30°C, a melhor redução percentual do tempo de fusão foi obtida para a temperatura de 20°C. A pesquisa também mostra que o aumento do diâmetro não influencia o fluxo de calor inicial, porém aumentam o tempo de fusão do PCM. Este tempo de fusão pode ser relacionado com o comprimento característico da esfera, independente das temperaturas impostas à parede. Os estudos mostram também que a maior quantidade de armazenamento térmico através do PCM líquido é obtida com a combinação dos maiores diâmetros com as maiores temperaturas. Para obter o cálculo da fração líquida em função do tempo através de uma correlação, os parâmetros envolvidos foram calculados através dos números de Fourier, Stefan, Grashof e Prandtl. / This paper presents a numerical study of the phenomena that occur in the use of PCM (Phase Change Materials) packed in spherical cavities. The numerical simulation was performed with commercial software ANSYS-FLUENT. The numerical model is two-dimensional and consists of the mass conservation equations of momentum, energy and volume fraction, modeled by enthalpy-porosity technique. The computational mesh is the hexahedral type with refinements in regions with the highest thermal and fluid dynamic gradients. The numerical model was validated with experimental and numerical results of literature. It was studied melting cases of PCM RT 35, RT 55 and RT 82 in spherical cavities with constant temperature on the wall. The diameters of the spheres were 40, 60, 80 and 100 mm and temperatures imposed on the wall were 10, 20 and 30°C, above the melting temperature of the PCM. It was presented results of melt fraction and heat flow of 36 cases studied. Research shows that PCM with similar properties have the same behavior for melt fraction and heat flow, regardless of its melting temperature. The temperature rise in the sphere wall is responsible for higher heat flows and by decreasing the melt fraction obtained in time. The best percentage reduction in the melting time was obtained with 20°C of temperature differences. Research also shows that the increase in diameter does not influence the heat flux, but increases the PCM melting time. This melting time can be related to the sphere characteristic length, regardless of the temperatures imposed on the wall. The studies also show that the largest quantity of thermal storage through the liquid PCM is obtained by combining the larger diameters with higher temperatures. The main parameters involved in the phase change process are correlated through numbers of Fourier, Stefan, Grashof and Prandtl for the calculation of the liquid fraction as a function of time. To calculate the liquid fraction as a function of time through a correlation, the parameters involved were calculated using the Fourier, Stefan, Grashof and Prandtl numbers.
5

Modelagem numérica de tanques de armazenamento térmico aplicada a sistemas de refrigeração por adsorção

Adolfo, Cristian 04 December 2015 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-06-08T13:37:10Z No. of bitstreams: 1 arquivototal.pdf: 5529350 bytes, checksum: 5bf79c2d77151888e66a617ba01f6714 (MD5) / Made available in DSpace on 2017-06-08T13:37:10Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 5529350 bytes, checksum: 5bf79c2d77151888e66a617ba01f6714 (MD5) Previous issue date: 2015-12-04 / The environmental issues and the search for renewable and cheaper resources are encouraging the development of new air conditioner types. One of these models that can substitute the most usual nowadays is the adsorption air conditioner system, which does not need a vapor compressor and demands only a hot and a cold source to work. This hot source can easily be supplied by thermal waste or solar energy. However, the fact that solar energy varies throughout the day implies using a thermal storage system and an auxiliary heat source. Those have to be carefully designed in order to guarantee the maximum performance for the available solar energy. This text presents the development of the software SimAds, which employs numerical routines to solve the heating flow problem that occurs inside the adsorber bed during regeneration. The results given by SimAds are applied as boundary conditions in the thermal storage tank analysis of an adsorption air conditioner system. This study was carried out numerically evolving the Finite Volume Method, with physical and mathematical equations validated by S. Ievers’ (2009) work. The results showed that the storage tank's thermal stratification is higher between 2 p.m. and 5 p.m. in the afternoon, keeping lower levels during the rest of the day. The energy fraction demanded by the air conditioner's hot water circuit supplied by solar energy was find as 70%. The main conclusion shows that changing the tank inlet's height could increase the thermal performance of the storage system, principally in problems with more than one water inlet and transient temperatures. / A preocupação ambiental e a busca por utilização de recursos renováveis e mais econômicos vêm incentivando o desenvolvimento de novos modelos de condicionadores de ar. Um modelo alternativo ao mais empregado atualmente é o ar condicionado por adsorção, que dispensa o uso de compressores de vapor e precisa de uma fonte fria e uma fonte quente para seu funcionamento, podendo esta última ser resíduo térmico ou energia solar. O fato de a energia solar variar ao longo do dia e entre dias, no entanto, implica na adoção de sistemas de armazenamento de calor e na utilização de uma fonte auxiliar de energia, que devem ser devidamente estudados e dimensionados para que o aproveitamento da energia solar seja o maior possível. Esta dissertação apresenta o desenvolvimento do software SimAds, que simula através de rotinas numéricas o aquecimento dos módulos de adsorção durante a fase de regeneração. Os resultados obtidos através do SimAds serviram de condições de contorno para a análise do escoamento dentro do tanque de estocagem de água quente de um sistema de ar condicionado por adsorção. Este estudo foi conduzido numericamente utilizando o método dos volumes finitos, tendo a modelagem físico-matemática do problema validada pelo estudo de tanque de estocagem térmica realizado por S. Ievers (2009). Os resultados da simulação mostraram que o nível de estratificação térmica do tanque apresenta melhores resultados no período das 14 às 17 h, se mantendo em patamares menos favoráveis durante o restante do dia. A fração da energia consumida pelo circuito de água quente do ar condicionado suprida pelos coletores solares foi encontrada de 70%. A principal conclusão aponta que a alteração de altura das entradas do tanque pode melhorar o desempenho térmico do mesmo, principalmente em problemas em que há mais de uma entrada de água quente e com temperatura transiente.

Page generated in 0.0617 seconds