• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Armering i kantförstyvad platta vid olika betongkvaliteter. : En ekonomisk jämförelse.

Assi, Mohamad hadi, Al khateb, Mohammad January 2021 (has links)
This thesis is about how different concrete quality in foundation slabs affects the reinforcement content and the drying time. Changing the concrete quality also changes the reinforcement content and drying time. Its common that a change of concrete quality is requested by the contractor to avoid delays and thus making financial savings. But changing concrete quality can lead to problems if the changes in the reinforcement content are not taken into account. Foundation slabs are sensitive structural parts that are exposed to creep and shrink deformations. These deformations can cause cracks in reinforced foundation slabs.The purpose of this thesis is to study the effects that result from the increase of the concrete strength, to show the difference that occurs in the amount of the reinforcement and the time required for the concrete to dry out.To solve this, a calculation template have been developed based on MathCAD in which slabs on soil with different thicknesses and different concrete qualities were analyzed with respect to the reinforcement amounts and drying time. Two different concrete grades were used in the work, one was concrete C30-37, and the other was C45-55.Results show that an increase in the concrete quality of the slab on the ground leads to an increase in the reinforcement content that the slab needs and leads to a reduction in the drying time needed. This leads to an increase in the cost of the slab that has been cast. An example is a slab on the ground with a thickness of 150 mm, the amount of the reinforcement has increased by 19%, concrete cost has increased by 11.64% but drying time has decreased by 70%.
2

Jämförelse av armeringsmängd i betongpelare / Comparison of reinforcement quantity in concrete columns

Larsson, Viktor, Fransson, Andreaz January 2023 (has links)
Betongpelare är en vanlig del i konstruktioner inom bygg-och anläggningsbranschen och kräver normalt en stor mängd armeringsjärn för att säkerställa dess styrka och stabilitet. Vid dimensionering av slanka betongpelare ska hänsyn inte bara tas till första ordningens moment och deformationer utan även andra ordningens teori ska beaktas. För att dimensionera förandra ordningens moment beskriver Eurokoderna tre olika metoder, en generell metod samt två förenklade metoder: nominell styvhet och nominell krökning. Dimensionering kan ske förhand eller med datorprogram. FEM-Design, som är ett avancerat analysprogram, baseras på finita elementmetoden som är en numerisk analysmetod och ett av de vanligaste sätten att beräkna fysikaliska fenomen. FEM-Design kan ofta ge ett bättre och säkrare resultat då handberäkningar approximerar för att de ska vara hanterbara.I arbetet jämförs beräknad armeringsmängd mellan handberäkningar med nominell styvhet,nominell krökning samt analysprogrammet FEM-Design. Arbetet har gjorts för att undersöka skillnaden i armering och därmed kunna avgöra vilken metod som ger minst respektive mest mängd armering. Betongpelarna som undersöks är slanka och har tre olika upplagsförhållanden, varje upplag belastas med tre olika belastningsfall. Beräkningarna är utförda enligt Eurokod 2 och resultatet blev att FEM-Design gav i sju av nio fall lägst andra ordningens moment. I åtta av nio fall gav FEM-Design lägst mängd armering medan nominell styvhet gav störst andra ordningens moment och störst mängd armering i samtliga fall. Nominell krökning gav ett andra ordningens moment som var nära FEM-Designs resultat medstörsta skillnaden på 30%. Beräknad armering för nominell krökning växlade mellan attstämma överens mest med nominell styvhet och FEM-Design. Utifrån resultatet har även skillnaden i pris på armering beräknats fram där nominell styvhet är det dyraste alternativet.FEM-Design är 61% billigare än nominell styvhet medan nominell krökning är 51% billigareän nominell krökning.Jämförelsen visar att nominell krökning kan i dessa belastningsfall som har undersökts ansesvara den bästa metoden av handberäkningarna men FEM-Design anses vara den bästa av samtliga metoder i detta arbete. Slutsatsen som kunde dras var att båda de förenklade handberäkningsmetoderna överdimensionerar armeringsmängden i pelarna och därmed anses FEM-Design som det bästa alternativet. FEM-Design gav inte bara minst armering och därmed lägsta armeringskostnaden utan dimensioneringen tog också kortast tid. / When designing slender concrete columns where the second-order theories need to be considered, the Eurocodes describe three different methods; a general method and two simplified methods - nominal stiffness and nominal curvature. Designing can be done manually or with programs. FEM-design, an advanced analysis program, is based on the finiteelement method, which is a numerical analysis method and is one of the most common ways to calculate big and complex problems. FEM-Design often provides more reliable results compared to calculations done by hand, which involve approximations to make them manageable.In this study the calculated reinforcement quantities are compared with hand calculationsusing the nominal stiffness, nominal curvature and FEM-Design. The purpose is to investigatethe difference in reinforcement and determine which method requires the least amount of reinforcement. The investigated columns are slender and have three different boundary conditions, each subject to three different load cases. The calculations are performed according to the Eurocode 2. The results show that in seven out of nine cases the FEM-Design method produced the lowest second-order moments. In eight out of nine cases, FEM-Design resulted in least amount of reinforcement, while nominal stiffness resulted in the highest second-order moments and greatest amount of reinforcement in all cases. Nominal curvature generally produced second-order moments that were close to FEM-Design, the largest difference being 30%. Regarding the calculated reinforcement , nominal curvature varied in agreement with nominal stiffness and FEM-Design. The cost of reinforcement was also analyzed, with nominal stiffness being 51% more expensive than nominal curvature and 61% more expensive than FEM-Design. Nominal curvature was the preferred manual method, but FEM-Design emerged as the best overall method, offering both minimal reinforcement and shorter design time.

Page generated in 0.0851 seconds