• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toluene/xylene catabolic pathway of Pseudomonas putida strain O←2C←2

Aemprapa, Sirinun January 1996 (has links)
No description available.
2

The use of advanced analytical techniques for studying the biodegradation of aromatic hydrocarbons

Fisher, Steven J. January 2002 (has links)
Two case studies are described where partially biodegraded petroleum residues were collected from the marine environment and analysed to investigate the changes in aromatic hydrocarbons with increasing biodegradation.The first of these studies, involved following the weathering of sea-floor residues from drilling discharges from an offshore petroleum exploration and production platform situated off the coast of North Western Australia. During operations, formation cuttings with adhering oil-based drilling muds were discharged into the ocean via a chute into approximately 125n1 of water, forming a substantial mound at the base of the platform. A suite of seabed sediments was collected from 16 sampling sites at various distances from the platform immediately following the cessation of drilling operations. The distribution of hydrocarbons in the sediment directly under tile cuttings chute was consistent with that found in drilling fluids formulated from a kerosene-like fluid. The samples from more remote sites exhibited the successive enhancement of an unresolved complex mixture relative to the n-alkanes, associated with tile presence of residues from petroleum biodegradation processes. In a subsequent sampling some three years later, a 10 cm core was retrieved from the cuttings pile and divided into 1 cm depth intervals. Samples within 6 cm of the surface of the cuttings pile contained biodegraded residues of the drilling mud, where the extent of biodegradation increased with decreasing proximity to the surface, most likely indicative of aerobic biodegradation. Biodegradation was less evident in the underlying sediments, where anaerobic conditions prevailed. / Analysis of the aromatic hydrocarbons in both sets of sediment extracts by using gas chromatography-mass spectrometry (GC-MS) revealed the successive depletion of alkylnaphthalenes, and due to the subtlety of changes in the extent of biodegradation, provided an excellent opportunity to examine the susceptibility of biodegradation towards the individual alkylnaphthalenes in the marine environment. Conventional GC-MS analysis of these mixtures is performed under chromatographic conditions where complete resolution of the mixture is not achieved and several isomers co-elute. The mass spectra of these co-eluting isomers may be so similar that one is unable to differentiate between them, and their abundance may therefore not be determined. Since each isomer has a unique infrared spectrum, however, the abundance of each individual isomer was determined by comparing the infrared spectrum of the co-eluting compounds with the spectrum of each of the isomers. To this end, techniques were developed for the application of direct-deposition gas chromatography - Fourier transform infrared spectroscopy (GCFTIR) to the analysis of the complex mixture of alkylnaphthalenes present in the petroleum. This technique was also extended to discriminate between individual alkylphenanthrene isomers, and to clarify the sorption behaviour of the dimethylphenanthrenes by mordenite molecular sieves. The identification of other compounds of geochemical significance in petroleum is also described. / Analyses of' the aromatic hydrocarbons in the contaminated sea-floor sediments using GC-FTIR enabled the unambiguous identification and quantification of each of the dimethylnaphthalene, trimethylnaphthalene and tetramethylnaphthalene isomers present in the samples, from which the relative extents of depletion of each with increasing extent of biodegradation were determined. It was apparent from the considerable differences in the observed susceptibility to biodegradation that a strong relationship exists between the compound structure and its susceptibility to biodegradation, with 1,6-disubstituted polymethylnaphthalenes being preferentially depleted relative to other isomers that lack this feature. The second case study involved tracking the fate (weathering) of hydrocarbons from an accidental release of condensate from a buried pipeline into intertidal coastal (mangrove) sediments in North Western Australia. Sediment samples were collected on nine occasions over a three-year period. Chemical analysis of the saturated and aromatic hydrocarbon components of the petroleum extracts revealed that both hydrocarbon fractions exhibited an increasingly biodegraded profile with increased residence time in the sediments. In a similar manner to the first case study, detailed analysis of the aromatic hydrocarbons using GC-FTIR techniques was performed to determine the depletion of individual alkylnaphthalene isomers with increasing extent of biodegradation. It was apparent that a relationship similar to that observed for the sea-floor sediments exists between the alkylnaphthalene structure and its susceptibility to biodegradation. / Changes in the distribution of methylphenanthrene and dimethylphenanthrene isomer mixtures were also studied and the susceptibility to biodegradation amongst these determined in a similar manner. These relative susceptibilities to biodegradation of the aromatic hydrocarbons were then related to the established hierarchy of susceptibilities of the saturated hydrocarbons, in effect providing a second parallel system for the assessment of the extent of biodegradation. Finally, a system of ratios calculated from the relative abundances of selected aromatic hydrocarbons was developed and used as indicators to differentiate between several crude oils that have been biodegraded to varying extents. These parameters also offer promise as indicators of multiple accumulation events in oil reservoirs where petroleum fluids biodegraded to differing extents are mixed.
3

Biodegradation of polycyclic aromatic hydrocarbons in marine sediment under anoxic conditions

Lü, Xiaoying, 吕晓莹 January 2011 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
4

Remediation of abandoned shipyard soil by organic amendment using compost of fungus Pleurotus pulmonarius.

January 2005 (has links)
by Chan Sze Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 193-218). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / 摘要 --- p.v / Contents --- p.viii / List of figures --- p.xv / List of tables --- p.xix / Abbreviations --- p.xxii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- The North Tsing Yi Abandoned Shipyard area --- p.1 / Chapter 1.2 --- Polycyclic aromatic hydrocarbons (PAHs) in the site --- p.3 / Chapter 1.2.1 --- Characteristics of PAHs --- p.3 / Chapter 1.2.2 --- Sources of PAHs --- p.8 / Chapter 1.2.3 --- Environmental fates of PAHs --- p.9 / Chapter 1.2.4 --- Biodegradation of PAHs --- p.10 / Chapter 1.2.5 --- Toxicity of PAHs --- p.13 / Chapter 1.2.6 --- PAHs contamination in Hong Kong --- p.14 / Chapter 1.2.7 --- Soil decontamination assessment in Hong Kong --- p.16 / Chapter 1.2.8 --- Environmental standards of PAHs --- p.18 / Chapter 1.2.9 --- Remediation technology of PAHs --- p.21 / Chapter 1.2.9.1 --- Bioremediation --- p.22 / Chapter 1.3 --- Heavy metals in the site --- p.28 / Chapter 1.3.1 --- "Characteristics of copper, lead and zinc" --- p.29 / Chapter 1.3.2 --- "Sources of copper, lead and zinc" --- p.32 / Chapter 1.3.3 --- "Environmental fates of copper, lead and zinc" --- p.34 / Chapter 1.3.4 --- "Toxicities of copper, lead and zinc" --- p.36 / Chapter 1.3.5 --- "Copper, lead and zinc contamination in Hong Kong" --- p.39 / Chapter 1.3.6 --- "Environmental standards of copper, lead and zinc" --- p.40 / Chapter 1.3.7 --- Remediation technology of heavy metal --- p.42 / Chapter 1.3.7.1 --- Chemical method --- p.42 / Chapter 1.3.7.2 --- Biological method --- p.43 / Chapter 1.3.7.3 --- Stabilization and Solidification --- p.45 / Chapter 1.4 --- Aim of study --- p.47 / Chapter 1.5 --- Objectives --- p.47 / Chapter 1.6 --- Research Strategy --- p.47 / Chapter 1.7 --- Significance of study --- p.48 / Chapter 2 --- Materials and Methods --- p.49 / Chapter 2.1 --- Soil Collection --- p.49 / Chapter 2.2 --- Characterization of soil --- p.49 / Chapter 2.2.1 --- Sample preparation --- p.49 / Chapter 2.2.2 --- "Soil pH, electrical conductivity & salinity" --- p.50 / Chapter 2.2.3 --- Total organic carbon contents --- p.51 / Chapter 2.2.4 --- Soil texture --- p.51 / Chapter 2.2.5 --- Moisture --- p.53 / Chapter 2.2.6 --- Total nitrogen and total phosphorus --- p.53 / Chapter 2.2.7 --- Available nitrogen --- p.53 / Chapter 2.2.8 --- Available phosphorus --- p.54 / Chapter 2.2.9 --- Soil bacterial and fungal population --- p.54 / Chapter 2.2.10 --- Extraction of PAHs and organic pollutants --- p.55 / Chapter 2.2.10.1 --- Extraction procedure --- p.55 / Chapter 2.2.10.2 --- GC-MS condition --- p.56 / Chapter 2.2.10.3 --- Preparation of mixed PAHs stock solution --- p.56 / Chapter 2.2.11 --- Oil and grease content --- p.57 / Chapter 2.2.12 --- Total Petroleum Hydrocarbons (TPH) --- p.57 / Chapter 2.2.13 --- Total heavy metal analysis --- p.58 / Chapter 2.2.14 --- Toxicity characteristic leaching procedure (TCLP) --- p.59 / Chapter 2.2.15 --- Extraction efficiency --- p.59 / Chapter 2.3 --- Production of mushroom compost --- p.60 / Chapter 2.4 --- Characterization of mushroom compost --- p.62 / Chapter 2.4.1 --- Enzyme assay --- p.62 / Chapter 2.4.1.1 --- Laccase assay --- p.62 / Chapter 2.4.1.2 --- Manganese peroxidase assay --- p.62 / Chapter 2.5 --- Addition of mushroom to soil on site --- p.63 / Chapter 2.5.1 --- Transportation of mushroom compost to Tsing Yi --- p.63 / Chapter 2.5.2 --- Mixing of mushroom compost and soil --- p.64 / Chapter 2.6 --- Soil Monitoring --- p.64 / Chapter 2.6.1 --- On site air and soil measurements --- p.64 / Chapter 2.6.1.1 --- Air temperature and moisture --- p.64 / Chapter 2.6.1.2 --- Light intensity --- p.64 / Chapter 2.6.1.3 --- UV intensity --- p.65 / Chapter 2.6.1.4 --- Rainfall --- p.65 / Chapter 2.6.1.5 --- Soil temperature --- p.65 / Chapter 2.6.2 --- Soil chemical characteristic --- p.65 / Chapter 2.6.3 --- Relative residue pollutant (%) --- p.65 / Chapter 2.7 --- Toxicity of treated soil --- p.66 / Chapter 2.7.1 --- Seed germination test --- p.66 / Chapter 2.7.2 --- Indigenous bacterial toxicity test --- p.67 / Chapter 2.7.3 --- Fungal toxicity test --- p.68 / Chapter 2.7.3.1 --- Preparation of ergosterol standard solution --- p.70 / Chapter 2.8 --- Soil Washing --- p.70 / Chapter 2.8.1 --- Optimization of soil washing --- p.70 / Chapter 2.8.1.1 --- Effect of hydrochloric acid concentration --- p.70 / Chapter 2.8.1.2 --- Effect of incubation time --- p.71 / Chapter 2.9 --- Phytoremediation --- p.71 / Chapter 2.10 --- Mycoextraction --- p.72 / Chapter 2.11 --- Integrated bioextraction --- p.72 / Chapter 2.12 --- Cementation --- p.73 / Chapter 2.13 --- Glass encapsulation --- p.73 / Chapter 2.14 --- Statistical analysis --- p.74 / Chapter 3 --- Results --- p.75 / Chapter 3.1 --- Characterization of soil --- p.75 / Chapter 3.2 --- Characterization of mushroom compost --- p.78 / Chapter 3.2.1 --- Enzyme activity --- p.78 / Chapter 3.2.2 --- Total nitrogen and total phosphorus contents --- p.78 / Chapter 3.3 --- Soil monitoring --- p.79 / Chapter 3.3.1 --- Initial pollutant content in biopile and fungal treatment soils --- p.79 / Chapter 3.3.2 --- On site air and soil physical characteristics --- p.81 / Chapter 3.3.2.1 --- Soil temperature and air temperature --- p.81 / Chapter 3.3.3 --- Soil chemical characteristic --- p.84 / Chapter 3.3.3.1 --- Effect of type of treatment on total petroleum hydrocarbon content --- p.85 / Chapter 3.3.3.2 --- Effect of type of treatment on oil and grease content --- p.87 / Chapter 3.3.3.3 --- Soil pH --- p.89 / Chapter 3.3.3.4 --- Moisture --- p.91 / Chapter 3.3.3.5 --- Electrical conductivity --- p.92 / Chapter 3.3.3.6 --- Salinity --- p.93 / Chapter 3.3.3.7 --- Microbial population --- p.95 / Chapter 3.3.3.8 --- Removal of organopollutant PAHs in biopile and fungal treatment --- p.98 / Chapter 3.3.3.9 --- Effect of type of treatment on residual PAHs at Day 4 --- p.104 / Chapter 3.3.3.10 --- Effect of type of treatment on residual PAHs at peak levels --- p.107 / Chapter 3.3.3.11 --- Effect of type of treatment on residual organopollutants at the end of treatments --- p.109 / Chapter 3.3.3.12 --- Effect of type of treatment on total nitrogen and phosphorus contents --- p.111 / Chapter 3.3.3.13 --- Effect of type of treatment on physical and chemical properties of soil --- p.113 / Chapter 3.4 --- Toxicity of treated soil --- p.116 / Chapter 3.4.1 --- Seed germination test --- p.116 / Chapter 3.4.2 --- Indigenous bacterial toxicity test --- p.120 / Chapter 3.4.3 --- Fungal toxicity test --- p.125 / Chapter 3.5 --- Soil washing --- p.129 / Chapter 3.5.1 --- Optimisation of soil washing --- p.129 / Chapter 3.5.1.1 --- The effect of hydrochloric acid concentration --- p.129 / Chapter 3.5.1.2 --- The effect of incubation time --- p.134 / Chapter 3.6 --- Mycoextraction --- p.139 / Chapter 3.7 --- Phytoextraction and integrated bioextraction --- p.146 / Chapter 3.8 --- Cementation --- p.153 / Chapter 3.9 --- Glass encapsulation --- p.158 / Chapter 4 --- Discussion --- p.160 / Chapter 4.1 --- Characterization of soil --- p.160 / Chapter 4.2 --- Characterization of mushroom compost --- p.162 / Chapter 4.2.1 --- Enzyme activity --- p.162 / Chapter 4.2.2 --- Total nitrogen and total phosphorus contents --- p.163 / Chapter 4.3 --- Soil monitoring --- p.163 / Chapter 4.3.1 --- Initial pollutant content in biopile and fungal treatment soil --- p.163 / Chapter 4.3.2 --- On site air and soil physical characteristics --- p.164 / Chapter 4.3.3 --- Soil chemical characteristic --- p.164 / Chapter 4.3.3.1 --- Soil pH --- p.164 / Chapter 4.3.3.2 --- Moisture --- p.165 / Chapter 4.3.3.3 --- Electrical conductivity --- p.165 / Chapter 4.3.3.4 --- Salinity --- p.166 / Chapter 4.3.3.5 --- Microbial population in biopile and fungal treatments --- p.166 / Chapter 4.3.3.6 --- Removal of organopollutant PAHs in biopile and fungal treatments --- p.168 / Chapter 4.3.3.7 --- Effect of type of treatment on residual PAHs at peak levels --- p.170 / Chapter 4.3.3.8 --- Effect of type of treatment on residual oil and grease and TPH contents --- p.171 / Chapter 4.3.3.9 --- Effect of type of treatment on total nitrogen and phosphorus contents --- p.172 / Chapter 4.3.3.10 --- Effect of type of treatment on physical and chemical properties of the soil --- p.173 / Chapter 4.4 --- Toxicity of treated soil --- p.174 / Chapter 4.5 --- Summary of Pleurotus pulmonarius mushroom compost on organopollutant remediation --- p.177 / Chapter 4.6 --- Soil washing --- p.178 / Chapter 4.7 --- Mycoextraction --- p.180 / Chapter 4.8 --- Phytoextraction and integrated bioextraction --- p.182 / Chapter 4.9 --- Cementation --- p.184 / Chapter 4.10 --- Glass encapsulation --- p.185 / Chapter 4.11 --- "Summary of physical, chemical and biological heavy metal removal treatments" --- p.186 / Chapter 4.12 --- Future studies --- p.187 / Chapter 5 --- Conclusion --- p.190 / Chapter 6 --- References --- p.193
5

Anaerobic Degradation of Polycyclic Aromatic Hydrocarbons at a Creosote-Contaminated Superfund Site and the Significance of Increased Methane Production in an Organophilic Clay Sediment Cap

Smith, Kiara L. 01 January 2010 (has links)
The overall goal of this work was to investigate microbial activity leading to the anaerobic degradation of polycyclic aromatic hydrocarbons and an organophilic clay sediment cap used at a creosote-contaminated Superfund site. To determine whether or not PAHs were being degraded under anaerobic conditions in situ, groundwater and sediment porewater samples were analyzed for metabolic biomarkers, or metabolites, formed in the anaerobic degradation of naphthalene (a low-molecular weight PAH). In addition, a groundwater push-pull method was developed to evaluate whether the transformation of deuterated naphthalene to a deuterated metabolite could be monitored in situ and if conservative rates of transformation can be defined using this method. Metabolites of anaerobic naphthalene degradation were detected in all samples that also contained significant levels of naphthalene. Anaerobic degradation of naphthalene appears to be widespread in the upland contaminated aquifer, as well as within the adjacent river sediments. A zero-order rate of transformation of naphthalene-D₈ to naphthoic acid-D₇was calculated as 31 nM·d-¹. This study is the first reported use of deuterated naphthalene to provide both conclusive evidence of the in situ production of breakdown metabolites and an in situ rate of transformation. Methane ebullition was observed in areas of the sediment cap footprint associated with organophilic clay that was used a reactive capping material to sequester mobile non-aqueous phase liquid (NAPL) at the site. Anaerobic slurry incubations were constructed using sediment core samples to quantify the contribution of the native sediment and the different layers of capping material (sand and organophilic clay) to the overall methane production. Substrate addition experiments using fresh, unused organophilic clay, as well as measured changes in total carbon in organophilic clay over time supported the hypothesis that microbes can use organophilic clay as a carbon source. Quantitative PCR (qPCR) directed at the mcrA gene enumerated methanogens in field samples and incubations of native sediment and capping materials. Denaturing gradient gel electrophoresis (DGGE) was also performed on DNA extracted from these samples to identify some of the predominant microorganisms within the sediment cap footprint. The organophilic clay incubations produced up to 1500 times more methane than the native sediment and sand cap incubations. The organophilic clay field sample contained the greatest number of methanogens and the native sediment contained the least. However, the native sediment incubations had greater numbers of methanogens compared to their respective field sample and comparable numbers to the organophilic clay incubation. An increase in methane production was observed with the addition of fresh, unused organophilic clay to the already active organophilic clay incubations indicating that organophilic clay stimulates methanogenesis. In addition, organophilic clay retrieved from the field lost about 10% of its total carbon over a 300-day incubation period suggesting that some component of organophilic clay may be converted to methane. DGGE results revealed that some of the predominant groups within the native sediment and sediment cap were Bacteriodetes, Firmicutes, Chloroflexi, and Deltaproteobacteria. An organism 98% similar to Syntrophus sp. was identified in the organophilic clay suggesting this organism may be working in concert with methanogens to convert the organic component of organophilic clay ultimately to methane. The capacity of organophilic clay to sequester organic contaminants will likely change over time as the organic component is removed from the clay. This, in turn, affects the use of this material as a long-term remedial strategy in reduced, contaminated environments.
6

Spatio-temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of a petrochemical plant in Cape Town

Andong Omores, Raissa January 2016 (has links)
Thesis (MTech (Chemistry))--Cape Peninsula University of Technology, 2016. / Polycyclic aromatic hydrocarbons (PAHs) are an alarming group of organic substances for humans and environmental organisms due to their ubiquitous presence, toxicity, and carcinogenicity. They are semi-volatile substances which result from the fusion of carbon and hydrogen atoms and constitute a large group of compounds containing two to several aromatic rings in their molecule. Natural processes and several anthropogenic activities involving complete or incomplete combustion of organic substances such as coal, fossil fuel, tobacco and other thermal processes, generally result in the release of the PAHs into the environment. However, the fate of the PAHs is of great environmental concern due to their tendency to accumulate and their persistence in different environmental matrices and their toxicity. Animal studies have revealed that an excessive exposure to PAHs can be harmful. Evidence of their carcinogenic, mutagenic, and immune-suppressive effects has been reported in the literature. In the soil environment, they have the tendency to be absorbed by plants grown on soil being contaminated by the PAHs. It is, therefore, important to evaluate their occurrence levels in different environmental matrices such as soil concentrations.
7

Degradation and detoxification of polycyclic aromatic hydrocarbons (PAHs) by photocatalytic oxidation.

January 2002 (has links)
Yip, Ho-yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 181-201). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Contents --- p.vi / List of Figures --- p.x / List of Tables --- p.xvii / Abbreviations --- p.xix / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Polycyclic aromatic hydrocarbons (PAHs) --- p.1 / Chapter 1.1.1 --- Characteristics of PAHs --- p.1 / Chapter 1.1.2 --- Sources of PAHs --- p.2 / Chapter 1.1.3 --- Environmental fates of PAHs --- p.3 / Chapter 1.1.4 --- Effects of PAHs on living organisms --- p.5 / Chapter 1.1.4.1 --- General effects --- p.5 / Chapter 1.1.4.2 --- Effects on plants --- p.6 / Chapter 1.1.4.3 --- Effects on invertebrates --- p.7 / Chapter 1.1.4.4 --- Effects on fishes --- p.7 / Chapter 1.1.4.5 --- Effects on reptiles and amphibians --- p.8 / Chapter 1.1.4.6 --- Effects on birds --- p.9 / Chapter 1.1.4.7 --- Effects on mammals --- p.9 / Chapter 1.2 --- PAH contamination in Hong Kong --- p.10 / Chapter 1.3 --- Treatments of PAH contamination --- p.12 / Chapter 1.3.1 --- Physical treatments --- p.12 / Chapter 1.3.2 --- Chemical treatments --- p.13 / Chapter 1.3.3 --- Biological treatments --- p.14 / Chapter 1.4 --- Advanced oxidation processes (AOPs) --- p.16 / Chapter 1.5 --- Summary --- p.24 / Chapter 2. --- Objectives --- p.27 / Chapter 3. --- Materials and Methods --- p.28 / Chapter 3.1 --- Chemicals --- p.28 / Chapter 3.2 --- Photocatalytic reactor --- p.30 / Chapter 3.3 --- Determination of PAHs concentrations --- p.30 / Chapter 3.3.1 --- Extraction of PAHs --- p.30 / Chapter 3.3.2 --- Quantification of PAHs --- p.32 / Chapter 3.4 --- Optimization of physico-chemical conditions for PCO --- p.37 / Chapter 3.4.1 --- Determination of the reaction time for optimization of PCO --- p.37 / Chapter 3.4.2 --- Effect of titanium dioxide (Ti02) concentration and light intensity --- p.38 / Chapter 3.4.3 --- Effect of initial pH and hydrogen peroxide (H2O2) concentration --- p.38 / Chapter 3.4.4 --- Effect of initial PAHs concentration --- p.39 / Chapter 3.5 --- Toxicity analysis --- p.39 / Chapter 3.5.1 --- Microtox® test for acute toxicity --- p.39 / Chapter 3.5.2 --- Mutatox® test for genotoxicity --- p.42 / Chapter 3.6 --- Determination of total organic carbon (TOC) removal in optimized PCO --- p.43 / Chapter 3.7 --- Determination of degradation pathways --- p.43 / Chapter 3.7.1 --- Extraction of intermediates and/or degradation products --- p.45 / Chapter 3.7.2 --- Identification of intermediates and/or degradation products --- p.45 / Chapter 4. --- Results --- p.49 / Chapter 4.1 --- Determination of PAHs concentrations --- p.49 / Chapter 4.2 --- Optimization of extraction method --- p.49 / Chapter 4.3 --- Optimization of physico-chemical conditions for PCO --- p.49 / Chapter 4.3.1 --- Determination of the reaction time for optimization of PCO --- p.49 / Chapter 4.3.2 --- Effect of Ti02 concentration and light intensity --- p.60 / Chapter 4.3.3 --- Effect of initial pH --- p.88 / Chapter 4.3.4 --- Effect of initial H2O2 concentration --- p.99 / Chapter 4.3.5 --- Effect of initial PAHs concentration --- p.104 / Chapter 4.3.6 --- Improvements on removal efficiency (RE) after optimization --- p.113 / Chapter 4.4 --- Toxicity analysis --- p.122 / Chapter 4.4.1 --- Microtox® test for acute toxicity --- p.122 / Chapter 4.4.2 --- Mutatox® test for genotoxicity --- p.122 / Chapter 4.5 --- Determination of TOC removal in optimized PCO --- p.129 / Chapter 4.6 --- Determination of degradation pathways --- p.129 / Chapter 5. --- Discussion --- p.150 / Chapter 5.1 --- Determination of PAHs concentrations --- p.150 / Chapter 5.2 --- Optimization of extraction method --- p.150 / Chapter 5.3 --- Optimization of physico-chemical conditions for PCO --- p.151 / Chapter 5.3.1 --- Determination of the reaction time for optimization of PCO --- p.151 / Chapter 5.3.2 --- Effects of Ti02 concentration and light intensity --- p.152 / Chapter 5.3.3 --- Effects of initial pH --- p.160 / Chapter 5.3.4 --- Effects of initial H202 concentration --- p.163 / Chapter 5.3.5 --- Effects of initial PAHs concentration --- p.165 / Chapter 5.3.6 --- Improvements on RE after optimization --- p.167 / Chapter 5.4 --- Toxicity analysis --- p.169 / Chapter 5.4.1 --- Microtox® test for acute toxicity --- p.169 / Chapter 5.4.2 --- Mutatox® test for genotoxicity --- p.170 / Chapter 5.5 --- Determination of TOC removal in optimized PCO --- p.171 / Chapter 5.6 --- Determination of detoxification pathways --- p.172 / Chapter 6. --- Conclusion --- p.177 / Chapter 7. --- References --- p.181 / Chapter 8. --- Appendix I --- p.202

Page generated in 0.1595 seconds