• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance modeling of congestion control and resource allocation under heterogeneous network traffic : modeling and analysis of active queue management mechanism in the presence of poisson and bursty traffic arrival processes

Wang, Lan January 2010 (has links)
Along with playing an ever-increasing role in the integration of other communication networks and expanding in application diversities, the current Internet suffers from serious overuse and congestion bottlenecks. Efficient congestion control is fundamental to ensure the Internet reliability, satisfy the specified Quality-of-Service (QoS) constraints and achieve desirable performance in response to varying application scenarios. Active Queue Management (AQM) is a promising scheme to support end-to-end Transmission Control Protocol (TCP) congestion control because it enables the sender to react appropriately to the real network situation. Analytical performance models are powerful tools which can be adopted to investigate optimal setting of AQM parameters. Among the existing research efforts in this field, however, there is a current lack of analytical models that can be viewed as a cost-effective performance evaluation tool for AQM in the presence of heterogeneous traffic, generated by various network applications. This thesis aims to provide a generic and extensible analytical framework for analyzing AQM congestion control for various traffic types, such as non-bursty Poisson and bursty Markov-Modulated Poisson Process (MMPP) traffic. Specifically, the Markov analytical models are developed for AQM congestion control scheme coupled with queue thresholds and then are adopted to derive expressions for important QoS metrics. The main contributions of this thesis are listed as follows: • Study the queueing systems for modeling AQM scheme subject to single-class and multiple-classes Poisson traffic, respectively. Analyze the effects of the varying threshold, mean traffic arrival rate, service rate and buffer capacity on the key performance metrics. • Propose an analytical model for AQM scheme with single class bursty traffic and investigate how burstiness and correlations affect the performance metrics. The analytical results reveal that high burstiness and correlation can result in significant degradation of AQM performance, such as increased queueing delay and packet loss probability, and reduced throughput and utlization. • Develop an analytical model for a single server queueing system with AQM in the presence of heterogeneous traffic and evaluate the aggregate and marginal performance subject to different threshold values, burstiness degree and correlation. • Conduct stochastic analysis of a single-server system with single-queue and multiple-queues, respectively, for AQM scheme in the presence of multiple priority traffic classes scheduled by the Priority Resume (PR) policy. • Carry out the performance comparison of AQM with PR and First-In First-Out (FIFO) scheme and compare the performance of AQM with single PR priority queue and multiple priority queues, respectively.
2

Performance modeling of congestion control and resource allocation under heterogeneous network traffic. Modeling and analysis of active queue management mechanism in the presence of poisson and bursty traffic arrival processes.

Wang, Lan January 2010 (has links)
Along with playing an ever-increasing role in the integration of other communication networks and expanding in application diversities, the current Internet suffers from serious overuse and congestion bottlenecks. Efficient congestion control is fundamental to ensure the Internet reliability, satisfy the specified Quality-of-Service (QoS) constraints and achieve desirable performance in response to varying application scenarios. Active Queue Management (AQM) is a promising scheme to support end-to-end Transmission Control Protocol (TCP) congestion control because it enables the sender to react appropriately to the real network situation. Analytical performance models are powerful tools which can be adopted to investigate optimal setting of AQM parameters. Among the existing research efforts in this field, however, there is a current lack of analytical models that can be viewed as a cost-effective performance evaluation tool for AQM in the presence of heterogeneous traffic, generated by various network applications. This thesis aims to provide a generic and extensible analytical framework for analyzing AQM congestion control for various traffic types, such as non-bursty Poisson and bursty Markov-Modulated Poisson Process (MMPP) traffic. Specifically, the Markov analytical models are developed for AQM congestion control scheme coupled with queue thresholds and then are adopted to derive expressions for important QoS metrics. The main contributions of this thesis are listed as follows: iii ¿ Study the queueing systems for modeling AQM scheme subject to single-class and multiple-classes Poisson traffic, respectively. Analyze the effects of the varying threshold, mean traffic arrival rate, service rate and buffer capacity on the key performance metrics. ¿ Propose an analytical model for AQM scheme with single class bursty traffic and investigate how burstiness and correlations affect the performance metrics. The analytical results reveal that high burstiness and correlation can result in significant degradation of AQM performance, such as increased queueing delay and packet loss probability, and reduced throughput and utlization. ¿ Develop an analytical model for a single server queueing system with AQM in the presence of heterogeneous traffic and evaluate the aggregate and marginal performance subject to different threshold values, burstiness degree and correlation. ¿ Conduct stochastic analysis of a single-server system with single-queue and multiple-queues, respectively, for AQM scheme in the presence of multiple priority traffic classes scheduled by the Priority Resume (PR) policy. ¿ Carry out the performance comparison of AQM with PR and First-In First-Out (FIFO) scheme and compare the performance of AQM with single PR priority queue and multiple priority queues, respectively.
3

Processkartläggning i samband med verksamhetsflytt : En fallstudie på SAAB Training & Simulation och SAAB Avionics Systems spedition- och ankomstprocesser / Process mapping in the context of operation movement : A case study on the forwarding and arrival process of SAAB Training & Simulation and SAAB Avionics Systems

Rådegård, Tobias, Oscarsson, David January 2016 (has links)
Syfte - Syftet med detta examensarbete är att studera hur idag två helt skilda verksamheter; SAAB Training & Simulation och SAAB Avionics Systems, arbetar med spedition- och ankomstprocesser. Detta för att undersöka bakgrunden till vad som utformat processerna och för att säkerställa att dessa tillfredsställs då de tillsammans ska bedriva godsmottagning från och med 2017. I studien ingår även att ge förslag på hur godsmottagningen organisatoriskt ska bedrivas vid en integrerad struktur. Metod - En jämförelse av de båda företagens sätt att arbeta utförs genom en flödeskartläggning på vardera företag utifrån principerna för en fallstudie. För att möjliggöra kartläggningen och för att samla fakta har intervjuer genomförts löpande under studiens gång. En litteraturstudie har även genomförts för att kunna koppla verkligheten mot aktuella teorier och ge välgrundade förslag. Resultat - Studien mynnar ut i två processkartor. En för hur SAAB organisatoriskt ska bedriva godsmottagning direkt efter att SAAB Avionics flyttat sin verksamhet och en för hur godsmottagningen organisatoriskt ska bedrivas inom en femårsperiod. Till de båda processkartorna följer rekommendationer och konkreta åtgärdsförslag för hur detta ska gå till och vad som bör beaktas vid utformning av spedition- och ankomstprocesser mellan två företag. Implikationer - Eftersom resultatet är fördelat på två tidsperioder kan de förslag och resultat som avser den första tidsperioden betraktas som applicerbara, dessa resultat har fokuserats till att skapa ett funktionellt flöde. Medans de förslag och resultat som avser den andra tidsperioden kan ses som en förstudie för fortsatt forskning eller vidare fördjupning ifrån företagens sida. Begränsningar - Då en fullständig analys av hur den gemensamma godsmottagningen ska bedrivas är för omfattande, är denna studie begränsad till hur detta organisatoriskt ska bedrivas. Nyckelord - Godsmottagning, verksamhetsflytt, processkartläggning, spedition- och ankomst, kundkrav. / Purpose - The purpose of this thesis is to study how two separate operations; SAAB Training & Simulation and SAAB Avionics Systems, are managing forwarding and arrival processes. This in order to investigate the background of what have framed the processes and thereby enable them to corporate on a common goods reception starting 2017. Further, this study includes organizational suggestions on how the integrated goods reception should be managed. Method - A comparison between the two companies were made by conducting a process map on each of the operations. This approach was conducted in accordance with the principles of a case study. By continuously collecting data throughout in-depth interviews, a clear connection to the purpose was ensured. Further, a literature review was conducted in order to connect reality to current theories, and thereby present legitimate suggestions. Findings - This study propose two process maps. The first one focus on how SAAB should manage their goods reception from an organizational perspective, immediately after SAAB Avionics move their operations. Contrary to the first, the second process map aims to present a solution during a five year-period of time. Both maps include recommendations and concrete suggestions on how this should be done, as well as what companies should take into account when designing forwarding and arrival processes in general. Implications - Because of how the result is distributed between two time periods, the first time frame could only be regarded as applicable, as these are the results that have been used to create a functioning flow. The implications and results regarding the second time frame could thereby be seen as a pre-study, or suggestions for future research on the basis of the company’s own incentives. Delimitations - Due to the exhaustive character of conducting a full analysis of the common goods reception, this study is delimited to how this process should be managed from an organizational perspective. Key terms - Goods reception, moving of an operation, process mapping, forwarding and arrival processes, customer requirements.
4

Towards time domain invariant QoS measures for queues with correlated traffic

Li, W., Kouvatsos, Demetres D., Fretwell, Rod J. 25 June 2014 (has links)
No / An investigation is carried out on the nature of QoS measures for queues with correlated traffic in both discrete and continuous time domains. The study focuses on the single server GI(G)/M-[x]/1/N and GI(G)/Geo([x])/1/N queues with finite capacity, N, a general batch renewal arrival process (BRAP), GI(G) and either batch Poisson, M-[x] or batch geometric, Geo([x]) service times with general batch sizes, X. Closed form expressions for QoS measures, such as queue length and waiting time distributions and blocking probabilities are stochastically derived and showed to be, essentially, time domain invariant. Moreover, the sGGeo(sGGo)/Geo/l/N queue with a shifted generalised geometric (sGGeo) distribution is employed to assess the adverse impact of varying degrees of traffic correlations upon basic QoS measures and consequently, illustrative numerical results are presented. Finally, the global balance queue length distribution of the M-Geo/M-Geo/1/N queue is devised and reinterpreted in terms of information theoretic principle of entropy maximisation. (C) 2014 Elsevier Inc. All rights reserved.
5

Performance Analysis Of A Variation Of The Distributed Queueing Access Protocol

Gautam, S Vijay 06 1900 (has links)
"A distributed queueing Medium Access Control (MAC) protocol is used in Distributed Queue Dual Bus (DQDB) networks. A modified version of the MAC protocol was proposed by R.R. Pillai and U. Mukherji in an attempt to overcome some of the shortcomings of the DQDB MAC protocol. They analyzed the performance of the system for Bernoulli arrivals and for large propagation delays between the nodes. We extend the performance analysis of the modified MAC protocol for a DQDB type of Network. The parameter of interest to us is the bus access delay. This has two components, viz., the request bus access delay and the data bu6 access delay. We use the model at the request point at node and present methods to evaluate the delay experienced in such a model. The model is an n-priority ./D/l queue with D vacations (non-preemptive priority) where n is the number of nodes sending requests on the request bus for transmission on the data bus. The methods presented help to evaluate the request bus access delay when the arrivals at each node are Markovian Arrival Processes (MAPs). The algorithms for evaluating the mean request bus access delay are based on matrix geometric techniques. Thus, one can use the algorithms developed in the literature to solve for the finite buffers case too. This model, for the request bus access delay, holds irrespective of the propagation delay between the nodes. We also evaluate the inter-departure time of class 1 customers and virtual customers in a 2-priority M/G/l system with G vacations (non-preemptive priority). In the case of Poisson arrivals at all the nodes, we would have a 2-priority M/D/l system with D vacations (non-preemptive priority). We thus evaluate the inter-arrival time of the free slots on the data bus as seen by Node 2. Note that this is independent of the number of active nodes in the network We then develop methods to evaluate the mean data bus access delay experienced by the customers at Node 2 in a three-node network with 2 nodes communicating with the third when the propagation delay between the nodes is large. We consider the case of finite Local Queue buffers at the two nodes. Using this assumption we arrive at process of arrivals to the Combined Queue and the process of free slots on the data bus to be Markov Modulated Bernoulli processes. The model at the combined queue at Node 2 then has a Quasi Birth-Death evolution. Thus, this system is solved by using the Ramaswami-Latouche algorithm. The stationary probabilities are then used to evaluate the mean data bus access delay experienced at Node 2. The finite buffer case of this system can be solved by G.Wi Stewart's algorithm. The method in modelling the system and the results are presented in detail for Poisson arrivals. The extension of this to more complex processes is also explained. We encounter in the analysis an explosion of the state-space of the system. We try to counter this by considering approximations to the process of free slots on the data bus. The approximations considered are on the basis of what are known as Idealized Aggregates. The performance of the approximation is also detailed. It works very well under low and moderate load but underestimates the mean delay under heavy load. Thereafter, we discuss the performance of the system with reference to the mean of the access delay and the standard deviation of the access delay under varying traffic at the two nodes. For this part we use simulation results to discuss the performance. The comparison between the performance measures at both the nodes is also done. Then we develop methods/techniques to understand the performance of the system when we have finite propagation delays between the nodes. We concentrate on the 3-node problem and calculate performance bounds based on linear programs. This is illustrated in detail for Bernoulli arrivals for the case of 1 slot propagation delay between the nodes as well as for the case of 2 slots propagation delay. The performance of the bounds obtained is also detailed. The presence of an idling system at the combined queue of Node 2 makes the bounds somewhat loose. Finally, we discuss the performance of the system with reference to the mean access delay and the standard deviation of the access delay under varying load on the system. Again, we rely on simulation studies. Finally, we study the performance of the system as a multiplexer. For this, we re­strict the traffic to Markov Modulated Processes (or those which would satisfy the Gartner-Ellis Theorem requirements). The traffic is characterized by what are known as Envelope Processes - Lower and Upper. The class of processes which satisfy the conditions of the Gartner-Ellis theorem come under the category where both the Envelope Processes exist and the Minimum Envelope Rate and the Maximum Lower Envelope Rate are the same. We use the system evolution equations at the combined queue at any node to develop re­lations between the various input and output processes. First, this is done for a. system of this kind, in isolation. Then, we consider this system as a part of the modified protocol and present relations, among the various input and output processes, which are specific to the modified protocol. The possible use of all of the above to do Admission Control at the entry point to the Asynchronous Transfer Mode (ATM) network is also presented.

Page generated in 0.0604 seconds