• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 525
  • 88
  • 81
  • 71
  • 24
  • 14
  • 10
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1034
  • 159
  • 147
  • 103
  • 77
  • 73
  • 71
  • 70
  • 68
  • 66
  • 63
  • 61
  • 58
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Long Term Impact of Biomineralization in Arsenic Fate Under Simulated Landfill Conditions

Fathordoobadi, Sahar January 2014 (has links)
Lowering the Maximum Contaminant Level (MCL) for arsenic in drinking water in the U.S., has caused a significant increase in the volume of Arsenic Bearing Solid Residuals (ABSRs) generated by drinking water utilities. Most of the affected utilities are smaller water treatment facilities, especially in the arid Southwest, and are expected to use adsorption onto solid sorbents for arsenic removal. Because of their high adsorption capacity and low cost, iron sorbents are used treatment technology and, when the sorbent's capacity is spent, these ABSRs are disposed in municipal solid waste (MSW) landfills and as a consequence arsenic is likely being released into leachate. However, a mature landfill is a biotic, reducing environment, which causes arsenic reduction and mobilization from the ABSRs. It is well documented that iron and sulfur redox cycles largely control arsenic cycling and, because iron and sulfur are ubiquitous in MSW, it is suspected that they play key roles in arsenic disposition in the landfill microcosm. The purpose of this study is to investigate the degree to which sulfate can prevent arsenic from leaching into landfill through biomineralization and to study ABSRs biogeochemical weathering effect on arsenic sequestration. The primary routes of iron and sulfate reduction in landfills are microbially mediated and biomineralization is a common by-product. In this case, biomineralization is the transformation of ferric (hydr) oxides into ferrous iron phase and sulfate into sulfide minerals such as: siderite (FeCO₃), vivianite (Fe₃(PO₄)₂), iron sulfide (FeS), goethite (α-FeOOH), and realgar (AsS). In this work, long-term microbial reduction and biomineralization of iron, sulfur, and arsenic species are evaluated as processes that both cause arsenic release from landfilled ABSRs and may possibly provide a means to re-sequester As in a recalcitrant solid state. The work uses long-term, continuous flow-through laboratory-scale columns in which controlled conditions similar to those found in a mature landfill prevail. In these simulated landfill column experiments, formation of biominerals, same as those that would naturally occur in typical non-hazardous MSW landfills, will be investigated. The feed contains lactate as the carbon source and primary electron donor, and ferric iron, arsenate, and a range of sulfate concentrations as primary electron acceptors. Our results suggest that biomineralization changes the stability of arsenic through a number of different processes including (i) release of arsenic through reductive dissolution of iron-based ABSRs; and (ii) readsorption/incorporation of released arsenic to secondary biominerals. The influence of biominerals, which have less surface area and adsorption capacity than original AFH, on the retention of arsenic is also investigated in this study. Our results show that the concentration of sulfate fed to the system affects the biomineral formation, and that the relative amounts and sequence of precipitation of biominerals affect the free arsenic concentration that can seemingly be engineered by the concentration of sulfate fed to the system. Comparison between the columns with different sulfate concentrations indicate that inflow sulfate concentration higher than 2.08 mM decreases As mobilization to <50%.
302

Distinguishing between natural and anthropogenic sources of arsenic in soils from the Giant mine, Northwest Territories and the North Brookfield mine, Nova Scotia

Wrye, Lori Ann 09 October 2008 (has links)
Anthropogenic and geogenic sources of arsenic (As) have been identified in mining-impacted soils from the Giant mine (1948-1999), NT and the North Brookfield mine (1886-1906), NS. Both used roasting to extract gold from the arsenopyrite ore, decomposing it to As-bearing iron oxides (roaster oxides or RO) containing As, and releasing As3+-bearing arsenic trioxide (As2O3). Arsenic trioxide is considered highly soluble with the dissolved As3+ species being more mobile and toxic than other oxidation states. Soil profiles from the Giant mine show elevated As and antimony (Sb) at the surface (As=140-3300ppm) and decreasing concentrations with depth (As=22-600ppm). Surface soils contain anthropogenically-derived As2O3 identified using synchrotron methods (µXRD, µXANES) and environmental SEM. The persistence of As2O3 is attributed to Sb in As2O3 grains, dry climate and high organics in the soils. Anthropogenically-derived RO of maghemite (containing both As3+ and As5+) and natural arsenopyrite were observed. Sequential selective extractions (SSE) from surface soils show between 20% and 75% of As extracted in the crystalline iron-oxide phase is attributed to As2O3 and RO, while at depth As is bound by organics in the weaker leaches. North Brookfield mine soils show lower total As (2ppm to 45ppm) except near the roaster (4300ppm). No As2O3 was identified, probably due to the smaller scale and age of the mine, lower organic content and the lack of Sb. As-bearing phases include RO of hematite (As5+), As-rich rims on titanium-oxides, and As associated with clays and goethite. Adjacent to the roaster, SSE show As was also in the amorphous iron-oxide phase, also shown by As in arsenopyrite weathering rims. There are many differences between the North Brookfield and Giant mine soils including roasting techniques which produced different RO mineralogy, the scale of mining, climate, soil type, and the presence of As2O3. Currently, the Giant property is not publically accessible but may become so in the future while the North Brookfield property is accessible. Understanding the form and distribution of As phases is critical because of the potential risk to human and ecosystem health associated with ingestion of soil particles and their control on the total dissolved As in surface and groundwater. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2008-09-29 17:21:50.73
303

An Investigation into the Sulphation Roasting of Enargite Concentrates

Chambers, Brandon 22 August 2012 (has links)
Potential new ore deposits containing significant levels of enargite, a copper arsenic sulphide mineral, are being considered for development. The processing of high arsenic copper concentrates directly in copper smelters is difficult due to environmental concerns. This thesis investigates a process using sulphation roasting as an alternative method for processing enargite concentrates; copper is recovered from the calcine by acid leaching, gold is extracted from the leach residue by conventional cyanidation and arsenic is either fixed in the calcine or precipitated from process emissions. In this research, sulphation roasting between the temperatures of 300-800oC, with varying oxygen and sulphur dioxide partial pressures, was investigated. Experiments indicated that high levels of copper extraction, as well as arsenic fixation, could be achieved from the produced calcines through hydrometallurgical processes. At operating temperatures between 400-550oC copper sulphate, copper arsenate, iron sulphate, hematite and iron arsenate form in the calcine, as well as some arsenic being volatilized as arsenic trioxide. At processing temperatures between 475-575oC, greater than 80% of the arsenic was retained in the calcine as copper and iron arsenates. Copper arsenate would be weak-acid soluble and fixed in an effluent treatment plant along with arsenic captured in the wet-gas scrubber bleed solution. As operating temperatures increase above 650oC copper sulphates were converted into oxysulphates, oxides and ferrites, hematite production was favoured, and arsenic was primarily volatilized. Increasing the sulphur dioxide addition in the reaction atmosphere resulted in additional sulphate formation and increased sulphate stability at higher temperatures. Sulphation roaster heat balances were developed for calcines produced at two temperatures, 500 and 750oC. They indicated that while high copper extraction and arsenic fixation rates could be achieved, the sulphation roasting reactions are highly exothermic and significant cooling water would need to be added. Due to these issues, it is likely that partial roasting operations would be economically favourable in greenfield operations. However, niche applications of this process in operations with existing copper SX/EW facilities in good acid markets, have the potential to be economically favourable. / Thesis (Master, Mining Engineering) -- Queen's University, 2012-08-17 20:14:36.292
304

Bioremediation of arsenic contaminated groundwater.

Teclu, Daniel Ghebreyo. January 2008 (has links)
Sulphate-reducing bacteria (SRB) mediate the reduction of metals/metalloids directly or indirectly. Bioremediation of arsenic contaminated water could be a cost-effective process provided a cheap carbon source is used. To this end, molasses was tested as a possible source of carbon for the growth of sulphate-reducing bacteria (SRB). Its chemical composition and the tolerance of SRB toward different arsenic species [As (III) and As (V)] were also investigated. Batch culture studies were carried out to assess 1, 2.5 and 5 g l-1 molasses as suitable concentrations for SRB growth. The results indicate that molasses does support SRB growth, the level of response being dependent on the concentration; however, growth on molasses was not as good as that obtained when lactate, the usual carbon source for SRB, was used. The molasses used in this study contained several metals including Al, As, Cu, Fe, Mn and Zn in concentrations ranging from 0.54-19.7 ìg g-1, but these levels were not toxic to the SRB. Arsenic tolerance, growth response and sulphate-reducing activity of the SRB were investigated using arsenite and arsenate solutions at final concentrations of 1, 5 and 20 mg l-1 for each species. The results revealed that very little SRB growth occurred at concentrations of 20 mg l-1 As (III) or As (V). At lower concentrations, the SRB grew better in As (V) than in As (III). Batch cultures of sulphate-reducing bacteria (SRB) in flasks containing pine bark, sand and polystyrene as support matrices and Postgate medium B were used to study formation of biofilms. The effects of the support matrices on the growth of the organisms were evaluated on the basis of pH and redox potential change and the levels of sulphide production and sulphate reduction. Characterisation of the matrix surfaces was done by means of environmental scanning electron microscopy (ESEM). A consortium of SRB growing on polystyrene caused a 49% of original sulphate reduction whereas on sand a 36% reduction occurred. Polystyrene was further examined for its durability as a long-term support material for the growing of SRB in the presence of As(III) and/or As(V) at concentrations of 1, 5 and 20 mg l-1. Both sulphate reduction and sulphide production were greater in this immobilised system than in the matrix-free control cultures. With pine bark as support matrix no significant sulphate reduction was observed. The kinetics of sulphate reduction by the immobilised cells were compared with those of planktonic SRB and found to be superior. The leaching of organic compounds, particularly phenolic substances, from the pine bark had a detrimental effect on the growth of the SRB. Different proportions of pine bark extract were used to prepare media to investigate this problem. Growth of SRB was totally inhibited when 100% pine bark extract was used. Analysis of these extracts showed the concentration of phenolics increased from 0.33 mg l-1 to 7.36 mg l-1 over the extraction interval of 15 min to 5 days. Digested samples of pine bark also showed the presence of heavy metals. The effects of nitrate, iron and sulphate and combinations thereof were investigated on the growth of a mixed culture of sulphate-reducing bacteria (SRB). The addition of 30 mg l-1 nitrate does not inhibit the production of sulphide by SRB when either 50 or 150 mg l-1 sulphate was present. The redox potential was decreased from 204 to -239 mV at the end of the 14 day batch experiment in the presence of 150 mg l-1 sulphate and 30 mg l-1 nitrate. The sulphate reduction activity of the SRB in the presence of 30 mg l-1 nitrate and 100 mg l-1 iron was about 42% of original sulphate, while if no iron was added, the reduction was only 34%. In the presence of 20 mg l-1 either As(III) or As(V), but particularly the former, growth of the SRB was inhibited when the cells were cultured in modified Postgate medium in the presence of 30 mg l-1 nitrate. The bioremoval of arsenic species [As(III) or As(V)] in the presence of mixed cultures of sulphate-reducing bacteria was investigated. During growth of a mixed SRB culture adapted to 0.1 mg l-1 arsenic species through repeated sub-culturing, 1 mg l-1 of either As(III) or As(V) was reduced to 0.3 and 0.13 mg l-1, respectively. Sorption experiments on the precipitate produced by batch cultured sulphate-reducing bacteria (SRB-PP) indicated a removal of about 77% and 55% of As(V) and As(III) respectively under the following conditions: pH 6.9; biomass (2 g l-1); 24 h contact time; initial arsenic concentration,1 mg l-1 of either species. These results were compared with synthetic iron sulphide as adsorbent. The adsorption data were fitted to Langmuir and Freundlich isotherms. Energy dispersive x-ray (EDX) analysis showed the SRB-PP contained elements such as sulphur, iron, calcium and phosphorus. Biosorption studies indicated that SRB cell pellets removed about 6.6% of the As(III) and 10.5% of the As(V) from water containing an initial concentration of 1 mg l-1 of either arsenic species after 24 h contact. Arsenic species were precipitated out of synthetic arsenic-contaminated groundwater by reacting it with the gaseous biogenic hydrogen sulphide generated during the growth of SRB. The percentage removal of arsenic species was dependent on the initial arsenic concentration present. Lastly, laboratory scale bioreactors were used to investigate the treatment of arsenic species contaminated synthetic groundwater. A mixed culture of SRB with molasses as a carbon source was immobilised on a polystyrene support matrix. The synthetic groundwater contained either As(III) or As(V) at concentrations of 20, 10, 5, 1 or 0.1 mg l-1 as well as 0.1 mg l-1 of a mixture with As(III) accounting for 20, 30, 40, 60 and 80% of the total. More that 90% and 60% of the As(V) and As(III) respectively were removed by the end of the 14-day experiment. At an initial concentration of 0.1 mg l-1 total arsenic had been reduced to below the WHO acceptable level of 10 ìg l-1 when the proportion of As(III) was 20 and 30%, while at 40% As(III) this level was reached only when the treatment time was increased to 21 days. The efficiency of As(III) removal was increased by first oxidising it to As(V) using MnO2. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
305

Development of analytical methods for the speciation of arsenic in the marine environment

Momplaisir, Georges-Marie January 1995 (has links)
Several biologically important arsenic compounds including methylarsonate, trimethylarsine oxide, tetramethylarsonium ion, arsenobetaine and arsenocholine were prepared, in good yields, from sodium arsenite, or dimethylarsinic acid. These organoarsenic compounds together with arsenite, arsenate and dimethylarsinic acid were used as standards for the development of analytical methods for determining the levels of individual arsenic compounds (arsenic speciation) present in natural matrices. / Arsenobetaine, arsenocholine and tetramethylarsonium ion were separated by high performance liquid chromatography (HPLC) with on-line detection by thermochemical hydride generation (THG)-AAS. The analytes were eluted from the cyanopropyl bonded phase HPLC column with a 1% acetic acid methanolic mobile phase which also contained diethyl ether triethylamine, and trimethylsulfonium iodide or picrylsulfonic acid. A surface response methodology and a univariate optimization procedure were used to determine the optimum concentration of solvent modifiers in the methanolic mobile phase. Limits of detection in the range 4-5 ng (as As) were obtained for the arsonium analytes under optimum chromatographic conditions. / A simple phenol extraction procedure was developed to isolate arsonium analytes from edible marine tissues (lobster tail muscle, peeled and deveined shrimp, and cod fillet), cod liver oil and human urine. The crude extracts were separated on the cyanopropyl column using a methanolic mobile phase and detected on-line by THG-AAS. Recoveries from tissues or from urine which had been spiked at 0.1-3.4 $ mu$g of As cation/g of fresh weight were 80% or greater for each of five sample types. / An improved HPLC-AAS interface which was compatible with either aqueous or organic mobile phases was also developed. The interface provided approximately equivalent responses to different arsenic oxidation states which resulted in low to subnanogram chromatographic limits of detection for arsenic oxyanions and arsonium cations in an aqueous or methanolic mobile phase. Nascent As anions and As cations were conveniently coextracted from aqueous solution or from fish muscle by phenol extraction and quantified in the same chromatographic run. This method has been applied to a standard reference sample of dogfish muscle (DORM-1), a marine reference sediment sample (PACS-1) and to sediment porewaters (SAG-15) from the Saguenay Fjord.
306

Factors influencing the metabolism of inorganic arsenic in humans /

Lindberg, Anna-Lena, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
307

Mortality and morbidity in lead smelter workers with concomitant exposure to arsenic /

Lundström, Nils-Göran, January 2007 (has links)
Diss. (sammanfattning) Umeå : Univ., 2007. / Härtill 4 uppsatser.
308

Quantification of potential arsenic bioavailability in spatially varying geologic environments at the watershed scale using chelating resins

Lake, Graciela Esther. January 2002 (has links)
Thesis (MS)--Texas A & M University, 2002. / Includes bibliographical references (p. 68-75). Also available via the Internet.
309

Environmental impact of thallium related to the mercury-thallium-gold mineralization in southwest Guizhou Province, China /

Xiao, Tangfu, January 2001 (has links)
Thèse (D.R.M.)--Université du Québec à Chicoutimi, 2001. / Document électronique également accessible en format PDF. CaQCU
310

Mechanisms of environmental carcinogenesis and metal-induced cellular signaling

Bower, Jacquelyn Jo. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2006. / Title from document title page. Document formatted into pages; contains xi, 180 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.

Page generated in 0.0291 seconds