• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sistema de classificação de plantas por meio de suas folhas usando uma arquitetura híbrida composta por algoritmos genéticos e rede neural artificial / Plants classication system through their leaves using a hybrid architecture composed of genetic algorithms and backpropagation neural network

Borges, Thiago Henrique 12 April 2013 (has links)
The number of plants at risk of extinction has increased gradually. With the purpose of reducing the risk is necessary identify the species for planning protection methods. The biodiversity of species existing in the plant kingdom make the use of traditional models of recognition and taxonomy a process very complex and slow. The identification of a plant can be performed observing his features, such as: fruits, seeds, flowers, roots, leaves and stems. But the simplest feature used are the leaves.This paper presents a hybrid system for identifying plant based on leaf image. This system is composed by Genetic Algorithm (GA) and Artificial Neural Network (ANN). The role played by the GA is to perform a preselection of plants forming a group that the answer of an unknown leaf is more probable and the purpose of ANN, trained by backpropagation algorithm, is to classify the unknown leaf performing the search only in the group calculated by the AG. Several tests were conducted and the results obtained demonstrate that the hybrid system achieved a recognition rate of 93,2%. / O número de plantas com risco de extinção tem aumentado gradativamente. Com a finalidade de diminuir esse risco, faz-se necessário planejar métodos de proteção e identificação das espécies. A grande biodiversidade de plantas existentes no reino vegetal torna os modelos tradicionais de identificação e de taxonomia uma função muito complexa e lenta. A identificação de uma planta pode ser realizada observando várias características, tais com: frutos, sementes, ores, raízes, folhas e caule. A característica mais simples de ser utilizada nessa identificação são as folhas. Este trabalho apresenta um sistema híbrido e automático de identificação de plantas por meio de suas folhas. Esse sistema é composto por Algoritmos Genéticos (AG) e pela Rede Neural Artificial (RNA). O objetivo do AG é realizar uma pré-seleção de plantas formando um grupo de folhas desconhecidas que seriam a resposta mais provável, enquanto que a finalidade da RNA, treinada pelo algoritmo backpropagation, é classificar a folha considerando apenas o grupo calculado pelo AG. Vários testes foram realizados e os resultados obtidos mostram que o sistema híbrido atingiu uma taxa de reconhecimento de 93,2 %. / Mestre em Ciências
2

Adaptive Steering Behaviour for Heavy Duty Vehicles

Åfeldt, Tom January 2017 (has links)
Today the majority of the driver assistance systems are rule-basedcontrol systems that help the driver control the truck. But driversare looking for something more personal and exible that can controlthe truck in a human way with their own preferences. Machine learningand articial intelligence can help achieve this aim. In this studyArticial Neural Networks are used to model the driver steering behaviourin the Scania Lane Keeping Assist. Based on this, trajectoryplanning and steering wheel torque response are modelled to t thedriver preference. A model predictive controller can be used to maintainstate limitations and to weigh the two modelled driver preferencestogether. Due to the diculties in obtaining an internal plant modelfor the model predictive controller a variant of a PI-controller is addedfor integral action instead. The articial neural network also containsan online learning feature to further customize the t to the driverpreference over time. / Idag används till största del regelbaserade reglersystem förförarassistanssystem i lastbilar. Men lastbilschaufförer vill ha någotmer personligt och flexibelt, som kan styra lastbilen på ett mänskligtsätt med förarens egna preferenser. Maskininlärning och artificiell intelligenskan hjälpa till för att uppnå detta mål. I denna studie användsartificiella neurala nätverk för att modellera förarens styrbeteende genomScania Lane Keeping Assist. Med användning av detta modellerasförarens preferenser med avseende på placering på vägbanan och momentpåslag på ratten. En modell prediktiv kontroller kan användas föratt begränsa tillstånd och för att väga de två modellerade preferensernamot varann. Eftersom det var mycket svårt att ta fram den internaprocessmodellen som krävdes för regulatorn används istället en variantav en PI-kontroller för att styra lastbilen. De artificiella neuralanätverken kan också tillåtas att lära sig under körning för att anpassasig till förarens preferenser över tid.

Page generated in 0.0736 seconds