• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 35
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Locational Marginal Price Forecasting with Artificial Neural Networks under Deregulation

Lai, Yi-Jen 15 August 2005 (has links)
Power systems all over the world advance towards the direction of deregulation in the past few years. Introducing competition mechanism and the principle of market rules in deregulation. Utility companies will face unprecedented changes and challenges. Taiwan power company is also working on the deregulation direction with a competitive environment opened up, it will improve the scientific and technological levels and the service quality of electricity. Load management functions as the marginal price of electricity is predicted. Consumers can get Real-Time Pricing information determine their own buying strategy. One most representative deregulation example in U.S.A. is the PJM(Pennsylvania¡BNew Jersey¡BMaryland)system combining generating, transmitting, distribution and sales of electricity. It offers the information of real-time power supply and is one of the cases in the world. Historical data in the thesis comes from PJM. Artificial Neural Network was designed to the Locational Marginal Price(LMP), considering the factors such as temperature and other relevant data from deregulation with the introduction of various parameters in forecasting, and the use of week as a counting base. LMP will be forecasted. The forecasted results will be to check the accuracy and performance with initial data.
12

Damage detection on railway bridges using Artificial Neural Network and train induced vibrations

Shu, Jiangpeng, Zhang, Ziye January 2012 (has links)
A damage detection approach based on Artificial Neural Network (ANN), using the statistics of structural dynamic responses as the damage index, is proposed in this study for Structural Health Monitoring (SHM). Based on the sensitivity analysis, the feasibility of using the changes of variances and covariance of dynamic responses of railway bridges under moving trains as the indices for damage detection is evaluated.   A FE Model of a one-span simply supported beam bridge is built, considering both single damage case and multi-damage case. A Back-Propagation Neural Network (BPNN) is designed and trained to simulate the detection process. A series of numerical tests on the FE model with different train properties prove the validity and efficiency of the proposed approach. The results show not only that the trained ANN together with the statistics can correctly estimate the location and severity of damage in the structure, but also that the identification of the damage location is more difficult than that of the damage severity. In summary, it is concluded that the use of statistical property of structural dynamic response as damage index with the Artificial Neural Network as detection tool for damage detection is reliable and effective.
13

Exergy based SI engine model optimisation : exergy based simulation and modelling of bi-fuel SI engine for optimisation of equivalence ratio and ignition time using artificial neural network (ann) emulation and particle swarm optimisation (PSO)

Rezapour, Kambiz January 2011 (has links)
In this thesis, exergy based SI engine model optimisation (EBSIEMO) is studied and evaluated. A four-stroke bi-fuel spark ignition (SI) engine is modelled for optimisation of engine performance based upon exergy analysis. An artificial neural network (ANN) is used as an emulator to speed up the optimisation processes. Constrained particle swarm optimisation (CPSO) is employed to identify parameters such as equivalence ratio and ignition time for optimising of the engine performance, based upon maximising 'total availability'. In the optimisation process, the engine exhaust gases standard emission were applied including brake specific CO (BSCO) and brake specific NOx (BSNOx) as the constraints. The engine model is developed in a two-zone model, while considering the chemical synthesis of fuel, including 10 chemical species. A computer code is developed in MATLAB software to solve the equations for the prediction of temperature and pressure of the mixture in each stage (compression stroke, combustion process and expansion stroke). In addition, Intake and exhaust processes are calculated using an approximation method. This model has the ability to simulate turbulent combustion and compared to computational fluid dynamic (CFD) models it is computationally faster and efficient. The selective outputs are cylinder temperature and pressure, heat transfer, brake work, brake thermal and volumetric efficiency, brake torque, brake power (BP), brake specific fuel consumption (BSFC), brake mean effective pressure (BMEP), concentration of CO2, brake specific CO (BSCO) and brake specific NOx (BSNOx). In this model, the effect of engine speed, equivalence ratio and ignition time on performance parameters using gasoline and CNG fuels are analysed. In addition, the model is validated by experimental data using the results obtained from bi-fuel engine tests. Therefore, this engine model was capable to predict, analyse and useful for optimisation of the engine performance parameters. The exergy based four-stroke bi-fuel (CNG and gasoline) spark ignition (SI) engine model (EBSIEM) here is used for analysis of bi-fuel SI engines. Since, the first law of thermodynamic (the FLT), alone is not able to afford an appropriate comprehension into engine operations. Therefore, this thesis concentrates on the SI engine operation investigation using the developed engine model by the second law of thermodynamic (the SLT) or exergy analysis outlook (exergy based SI engine model (EBSIEM)) In this thesis, an efficient approach is presented for the prediction of total availability, brake specific CO (BSCO), brake specific NOx (BSNOx) and brake torque for bi-fuel engine (CNG and gasoline) using an artificial neural network (ANN) model based on exergy based SI engine (EBSIEM) (ANN-EBSIEM) as an emulator to speed up the optimisation processes. In the other words, the use of a well trained an ANN is ordinarily much faster than mathematical models or conventional simulation programs for prediction. The constrained particle swarm optimisation (CPSO)-EBSIEM (EBSIEMO) was capable of optimising the model parameters for the engine performance. The optimisation results based upon availability analysis (the SLT) due to analysing availability terms, specifically availability destruction (that measured engine irreversibilties) are more regarded with higher priority compared to the FLT analysis. In this thesis, exergy based SI engine model optimisation (EBSIEMO) is studied and evaluated. A four-stroke bi-fuel spark ignition (SI) engine is modelled for optimisation of engine performance based upon exergy analysis. An artificial neural network (ANN) is used as an emulator to speed up the optimisation processes. Constrained particle swarm optimisation (CPSO) is employed to identify parameters such as equivalence ratio and ignition time for optimising of the engine performance, based upon maximising 'total availability'. In the optimisation process, the engine exhaust gases standard emission were applied including brake specific CO (BSCO) and brake specific NOx (BSNOx) as the constraints. The engine model is developed in a two-zone model, while considering the chemical synthesis of fuel, including 10 chemical species. A computer code is developed in MATLAB software to solve the equations for the prediction of temperature and pressure of the mixture in each stage (compression stroke, combustion process and expansion stroke). In addition, Intake and exhaust processes are calculated using an approximation method. This model has the ability to simulate turbulent combustion and compared to computational fluid dynamic (CFD) models it is computationally faster and efficient. The selective outputs are cylinder temperature and pressure, heat transfer, brake work, brake thermal and volumetric efficiency, brake torque, brake power (BP), brake specific fuel consumption (BSFC), brake mean effective pressure (BMEP), concentration of CO2, brake specific CO (BSCO) and brake specific NOx (BSNOx). In this model, the effect of engine speed, equivalence ratio and ignition time on performance parameters using gasoline and CNG fuels are analysed. In addition, the model is validated by experimental data using the results obtained from bi-fuel engine tests. Therefore, this engine model was capable to predict, analyse and useful for optimisation of the engine performance parameters. The exergy based four-stroke bi-fuel (CNG and gasoline) spark ignition (SI) engine model (EBSIEM) here is used for analysis of bi-fuel SI engines. Since, the first law of thermodynamic (the FLT), alone is not able to afford an appropriate comprehension into engine operations. Therefore, this thesis concentrates on the SI engine operation investigation using the developed engine model by the second law of thermodynamic (the SLT) or exergy analysis outlook (exergy based SI engine model (EBSIEM)) In this thesis, an efficient approach is presented for the prediction of total availability, brake specific CO (BSCO), brake specific NOx (BSNOx) and brake torque for bi-fuel engine (CNG and gasoline) using an artificial neural network (ANN) model based on exergy based SI engine (EBSIEM) (ANN-EBSIEM) as an emulator to speed up the optimisation processes. In the other words, the use of a well trained an ANN is ordinarily much faster than mathematical models or conventional simulation programs for prediction. The constrained particle swarm optimisation (CPSO)-EBSIEM (EBSIEMO) was capable of optimising the model parameters for the engine performance. The optimisation results based upon availability analysis (the SLT) due to analysing availability terms, specifically availability destruction (that measured engine irreversibilties) are more regarded with higher priority compared to the FLT analysis.
14

Identificação de variáveis prevalentes para situações de stress em parques de tancagem: uma análise a partir das redes neurais artificiais

Bortolini, Filipe 20 November 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-04-28T12:47:41Z No. of bitstreams: 1 FILIPE BORTOLINI_.pdf: 6329595 bytes, checksum: 3dd8331791bb827a0806c8da5947b553 (MD5) / Made available in DSpace on 2016-04-28T12:47:41Z (GMT). No. of bitstreams: 1 FILIPE BORTOLINI_.pdf: 6329595 bytes, checksum: 3dd8331791bb827a0806c8da5947b553 (MD5) Previous issue date: 2015-11-20 / Nenhuma / A melhoria no planejamento de operações é uma das preocupações constantes das refinarias de petróleo, e a gestão eficiente dos estoques em parques de tancagem é um ponto fundamental nesse contexto. No entanto, são poucos os trabalhos que tratam especificamente deste assunto e as ferramentas de simulação existentes são caras e não refletem a realidade de muitas refinarias. A gestão ineficiente ou o dimensionamento inadequado dos parques de tancagem, por sua vez, podem gerar uma série de prejuízos. Um parque superdimensionado gera custos de gestão e manutenção, além dos custos do estoque. Um parque subdimensionado pode gerar perdas devido a desabastecimentos e degradação de produtos, entre outros. Às situações em que o subdimensionamento gera impactos na produção, com ou sem perdas financeiras, dá-se a denominação de stress em parques de tancagem. Esse trabalho descreve a implantação de uma ferramenta que possibilita a quantificação do stress em parques de tancagem. Essa quantificação é feita com o apoio de uma heurística baseada em dados relativos às movimentações, manutenções e níveis de estoque dos tanques. Também descreve a forma de cálculo de cinquenta e nove variáveis relacionadas às movimentações dos tanques. A influência que essas variáveis têm na formação de situações de stress foi analisada através do uso de redes neurais artificiais. Essa influência foi quantificada em cinco diferentes cenários, considerando-se a existência ou não de um ciclo de certificação de produto e a natureza das variáveis analisadas. Como resultado, identifica-se que as variáveis relacionadas ao tempo de esvaziamento, tempo de tanque parado em nível baixo e tempo de enchimento são as prevalentes na criação de situações de stress em parques de tancagem no contexto analisado. Também são mapeados e formalizados os fluxos dos algoritmos para determinação das etapas do ciclo de um tanque, e é definida uma fórmula para a determinação do nível de stress em um parque de tancagem em um determinado período de tempo. / The improvement in operations planning is a constant concern of oil refineries, and the efficient management of inventories in tank farm sites is a key point in this context. However, there are few studies that deal specifically with this issue and existing simulation tools are expensive and do not reflect the reality of many refineries. The inefficient management or improper sizing of tank farm sites, in turn, can generate significant financial losses. A oversized tank farm generates management and maintenance costs, in addition to inventory costs. An undersized tank farm can generate losses due to shortages and degradation of products, among others. The situations in which the undersizing generates impact in operations, with or without financial losses, is defined as stress in tank farm sites. The present study describes the implementation of a tool that allows the quantification of stress in tank farm sites. This measurement is made using a heuristic based on data on the inventory movimentation, maintenance status and inventory levels of the tanks. It also describes the calculation method of fifty-nine variables related to the movimentation of inventory. The influence of these variables on the formation of stress situations was analyzed using artificial neural networks. This influence was quantified in five different scenarios, considering whether or not a product certification cycle and the nature of the variables. As a result, it is identified that the variables related to emptying time, tank downtime at low level and fill time are prevalent in creating stressful situations in tank farm sites in the analyzed context. They are also mapped and formalized flows of algorithms to determine the stages of a tank cycle, and is defined a formula for determining the stress level in a tankage park at a given time.
15

Artificial neural network (ANN) based decision support model for alternative workplace arrangements (AWA): readiness assessment and type selection

Kim, Jun Ha 11 November 2009 (has links)
A growing body of evidence shows that globalization and advances in information and communication technology (ICT) have prompted a revolution in the way work is produced. One of the most notable changes is the establishment of the alternative workplace arrangement (AWA), in which workers have more freedom in their work hours and workplaces. Just as all organizations are not good candidates for AWA adoption, all work types, all employees and all levels of facilities supports are not good candidates for AWA adoption. The main problem is that facility managers have no established tools to assess their readiness for AWA adoption or to select among the possible choices regarding which AWA type is most appropriate considering their organizations' business reasons or objectives of adoption and the current readiness levels. This dissertation resulted in the development of readiness level assessment indicators (RLAI), which measure the initial readiness of high-tech companies for adopting AWAs and the ANN based decision model, which allows facility managers to predict not only an appropriate AWA type, but also an anticipated satisfaction level considering the objectives and the current readiness level. This research has identified significant factors and relative attributes for facility managers to consider when measuring their organization's readiness for AWA adoption. Robust predictive performance of the ANN model shows that the main factors or key determinants have been correctly identified in RLAI and can be used to predict an appropriate AWA type as well as a high-tech company's satisfaction level regarding the AWA adoption.
16

Intelligent Methods For Dynamic Analysis And Navigation Of Autonomous Land Vehicles

Kaygisiz, Huseyin Burak 01 July 2004 (has links) (PDF)
Autonomous land vehicles (ALVs) have received considerable attention after their introduction into military and commercial applications. ALVs still stand as a challenging research topic. One of the main problems arising in ALV operations is the navigation accuracy while the other is the dynamic effects of road irregularities which may prevent the vehicle and its cargo to function properly. In this thesis, we propose intelligent solutions to these two basic problems of ALV. First, an intelligent method is proposed to enhance the performance of a coupled global positioning/inertial navigation system (GPS/INS) for land navigation applications during the GPS signal loss. Our method is based on using an artificial neural network (ANN) to intelligently aid the GPS/INS coupled navigation system in the absence of GPS signals. The proposed enhanced GPS/INS is used in the dynamic environment of a tour of an autonomous van and we provide the results here. GPS/INS+ANN system performance is thus demonstrated with the land trials. Secondly, our work focuses on the identification and enlargement of the stability region of the ALV. In this thesis, the domain of attraction of the ALV is found to be patched by chaotic and regular regions with chaotic boundaries which are extracted using novel technique of cell mapping equipped with measures of fractal dimension and rough sets. All image cells in the cellular state space, with their individual fractal dimension are classified as being members of lower approximation (surely stable), upper approximation (possibly stable) or boundary region using rough set theory. The obtained rough set with fractal dimension as its attribute is used to model the uncertainty of the regular regions. This uncertainty is then smoothed by a reinforcement learning algorithm in order to enlarge regular regions that are used for chassis control, critical in ALV in preventing vibration damages that can harm the payload. Hence, we will make ALV work in the largest safe area in dynamical sense and prevent the vehicle and its cargo.
17

Landing site selection for UAV forced landings using machine vision

Fitzgerald, Daniel Liam January 2007 (has links)
A forced landing for an Unmanned Aerial Vehicle (UAV) is required if there is an emergency on board that requires the aircraft to land immediately. Piloted aircraft in the same scenario have a human on board that is able to engage in the complex decision making process involved in the choice of a suitable landing location. If UAVs are to ever fly routinely in civilian airspace, then it is argued that the problem of finding a safe landing location for a forced landing is an important unresolved problem that must be addressed. This thesis presents the results of an investigation into the feasibility of using machine vision techniques to locate candidate landing sites for an autonomous UAV forced landing. The approach taken involves the segmentation of the image into areas that are large enough and free of obstacles; classification of the surface types of these areas; incorporating slope information from readily available digital terrain databases; and finally fusing these maps together using a high level set of simple linguistic fuzzy rules to create a final candidate landing site map. All techniques were evaluated on actual flight data collected from a Cessna 172 flying in South East Queensland. It was shown that the use of existing segmentation approaches from the literature did not provide the outputs required for this problem in the airborne images encountered in the gathered dataset. A simple method was then developed and tested that provided suitably sized landing areas that were free of obstacles and large enough to land. The advantage of this novel approach was that these areas could be extracted from the image directly without solving the difficult task of segmenting the entire image into the individual homogenous objects. A number of neural network classification approaches were tested with the surface types of candidate landing site regions extracted from the aerial images. A number of novel techniques were developed through experimentation with the classifiers that greatly improved upon the classification accuracy of the standard approaches considered. These novel techniques included: automatic generation of suitable output subclasses based on generic output classes of the classifier; an optimisation process for generating the best set of input features for the classifier based on an automated analysis of the feature space; the use of a multi-stage classification approach; and the generation of confidence measures based on the outputs of the neural network classifiers. The final classification result of the system performs significantly better than a human test pilot's classification interpretation of the dataset samples. In summary, the algorithms were able to locate candidate landing site areas that were free of obstacles 92.3 ±2.6% (99% confidence in the result) of the time, with free obstacle candidate landing site areas that were large enough to land in missed only 5.3 ±2.2% (99% confidence in the result) of the time. The neural network classification networks developed were able to classify the surface type of the candidate landing site areas to an accuracy of 93.9 ±3.7% (99% confidence in the result) for areas labelled as Very Certain. The overall surface type classification accuracy for the system (includes all candidate landing sites) was 91.95 ±4.2% (99% confidence in the result). These results were considered to be an excellent result as a human test pilot subject was only able to classify the same data set to an accuracy of 77.24 %. The thesis concludes that the techniques developed showed considerable promise and could be used immediately to enhance the safety of UAV operations. Recommendations include the testing of algorithms over a wider range of datasets and improvements to the surface type classification approach that incorporates contextual information in the image to further improve the classification accuracy.
18

Statistical Leakage Analysis Framework Using Artificial Neural Networks Considering Process And Environmental Variations

Janakiraman, V 02 1900 (has links) (PDF)
Leakage current and process variations are two primary hurdles in modern VLSI design. It depends exponentially on process and environmental parameters and hence small variations in these result in a large spread in leakage current of manufactured dies. Traditionally, Exponential Quadratic(EQ) models have been used to model leakage current as a function of process parameters which can model limited non-linearity and hence become inaccurate for large process variations. Artificial Neural Networks (ANN) have shown great promise in modeling circuit parameters for CAD applications. We model leakage with ANN models which perform better than the EQ models for increased process variations. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance for the case of Gaussian process variations. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN based leakage model. To the best of our knowledge this is the first result in this direction. All existing SLA frameworks are closely tied to the EQ leakage model and hence fail to work with sophisticated ANN models. We therefore set up an SLA framework that can efficiently work with these ANN models. Results show that the CDF of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo based simulations, being less than 1\% and 2\% respectively across a range of voltage and temperature values. The complexity of our framework is similar to existing SLA frameworks yet more accurate over a larger range of variations. Ignoring the thermal profile of the chip leads to a gross error of nearly 50\% in the prediction of leakage yield. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). Similarly leakage CDF can be predicted across a range of supply and body voltages since they are both part of the model. Our framework used analytical techniques to account for local variations and Monte Carlo techniques for global variations and hence it can also be used for Non-Gaussian global variations.
19

Synergistic use of promoter prediction algorithms: A choice for small training dataset?

Oppon, Ekow CruickShank January 2000 (has links)
Philosophiae Doctor - PhD / This chapter outlines basic gene structure and how gene structure is related to promoter structure in both prokaryotes and eukaryotes and their transcription machinery. An in-depth discussion is given on variations types of the promoters among both prokaryotes and eukaryotes and as well as among three prokaryotic organisms namely, E.coli, B.subtilis and Mycobacteria with emphasis on Mituberculosis. The simplest definition that can be given for a promoter is: It is a segment of Deoxyribonucleic Acid (DNA) sequence located upstream of the 5' end of the gene where the RNA Polymerase enzyme binds prior to transcription (synthesis of RNA chain representative of one strand of the duplex DNA). However, promoters are more complex than defined above. For example, not all sequences upstream of genes can function as promoters even though they may have features similar to some known promoters (from section 1.2). Promoters are therefore specific sections of DNA sequences that are also recognized by specific proteins and therefore differ from other sections of DNA sequences that are transcribed or translated. The information for directing RNA polymerase to the promoter has to be in section of DNA sequence defining the promoter region. Transcription in prokaryotes is initiated when the enzyme RNA polymerase forms a complex with sigma factors at the promoter site. Before transcription, RNA polymerase must form a tight complex with the sigma/transcription factor(s) (figure 1.1). The 'tight complex' is then converted into an 'open complex' by melting of a short region of DNA within the sequence involved in the complex formation. The final step in transcription initiation involves joining of first two nucleotides in a phosphodiester linkage (nascent RNA) followed by the release of sigma/transcription factors. RNA polymerase then continues with the transcription by making a transition from initiation to elongation of the nascent transcript.
20

Exergy Based SI Engine Model Optimisation. Exergy Based Simulation and Modelling of Bi-fuel SI Engine for Optimisation of Equivalence Ratio and Ignition Time Using Artificial Neural Network (ANN) Emulation and Particle Swarm Optimisation (PSO).

Rezapour, Kambiz January 2011 (has links)
In this thesis, exergy based SI engine model optimisation (EBSIEMO) is studied and evaluated. A four-stroke bi-fuel spark ignition (SI) engine is modelled for optimisation of engine performance based upon exergy analysis. An artificial neural network (ANN) is used as an emulator to speed up the optimisation processes. Constrained particle swarm optimisation (CPSO) is employed to identify parameters such as equivalence ratio and ignition time for optimising of the engine performance, based upon maximising ¿total availability¿. In the optimisation process, the engine exhaust gases standard emission were applied including brake specific CO (BSCO) and brake specific NOx (BSNOx) as the constraints. The engine model is developed in a two-zone model, while considering the chemical synthesis of fuel, including 10 chemical species. A computer code is developed in MATLAB software to solve the equations for the prediction of temperature and pressure of the mixture in each stage (compression stroke, combustion process and expansion stroke). In addition, Intake and exhaust processes are calculated using an approximation method. This model has the ability to simulate turbulent combustion and compared to computational fluid dynamic (CFD) models it is computationally faster and efficient. The selective outputs are cylinder temperature and pressure, heat transfer, brake work, brake thermal and volumetric efficiency, brake torque, brake power (BP), brake specific fuel consumption (BSFC), brake mean effective pressure (BMEP), concentration of CO2, brake specific CO (BSCO) and brake specific NOx (BSNOx). In this model, the effect of engine speed, equivalence ratio and ignition time on performance parameters using gasoline and CNG fuels are analysed. In addition, the model is validated by experimental data using the results obtained from bi-fuel engine tests. Therefore, this engine model was capable to predict, analyse and useful for optimisation of the engine performance parameters. The exergy based four-stroke bi-fuel (CNG and gasoline) spark ignition (SI) engine model (EBSIEM) here is used for analysis of bi-fuel SI engines. Since, the first law of thermodynamic (the FLT), alone is not able to afford an appropriate comprehension into engine operations. Therefore, this thesis concentrates on the SI engine operation investigation using the developed engine model by the second law of thermodynamic (the SLT) or exergy analysis outlook (exergy based SI engine model (EBSIEM)) In this thesis, an efficient approach is presented for the prediction of total availability, brake specific CO (BSCO), brake specific NOx (BSNOx) and brake torque for bi-fuel engine (CNG and gasoline) using an artificial neural network (ANN) model based on exergy based SI engine (EBSIEM) (ANN-EBSIEM) as an emulator to speed up the optimisation processes. In the other words, the use of a well trained an ANN is ordinarily much faster than mathematical models or conventional simulation programs for prediction. The constrained particle swarm optimisation (CPSO)-EBSIEM (EBSIEMO) was capable of optimising the model parameters for the engine performance. The optimisation results based upon availability analysis (the SLT) due to analysing availability terms, specifically availability destruction (that measured engine irreversibilties) are more regarded with higher priority compared to the FLT analysis. In this thesis, exergy based SI engine model optimisation (EBSIEMO) is studied and evaluated. A four-stroke bi-fuel spark ignition (SI) engine is modelled for optimisation of engine performance based upon exergy analysis. An artificial neural network (ANN) is used as an emulator to speed up the optimisation processes. Constrained particle swarm optimisation (CPSO) is employed to identify parameters such as equivalence ratio and ignition time for optimising of the engine performance, based upon maximising ¿total availability¿. In the optimisation process, the engine exhaust gases standard emission were applied including brake specific CO (BSCO) and brake specific NOx (BSNOx) as the constraints. The engine model is developed in a two-zone model, while considering the chemical synthesis of fuel, including 10 chemical species. A computer code is developed in MATLAB software to solve the equations for the prediction of temperature and pressure of the mixture in each stage (compression stroke, combustion process and expansion stroke). In addition, Intake and exhaust processes are calculated using an approximation method. This model has the ability to simulate turbulent combustion and compared to computational fluid dynamic (CFD) models it is computationally faster and efficient. The selective outputs are cylinder temperature and pressure, heat transfer, brake work, brake thermal and volumetric efficiency, brake torque, brake power (BP), brake specific fuel consumption (BSFC), brake mean effective pressure (BMEP), concentration of CO2, brake specific CO (BSCO) and brake specific NOx (BSNOx). In this model, the effect of engine speed, equivalence ratio and ignition time on performance parameters using gasoline and CNG fuels are analysed. In addition, the model is validated by experimental data using the results obtained from bi-fuel engine tests. Therefore, this engine model was capable to predict, analyse and useful for optimisation of the engine performance parameters. The exergy based four-stroke bi-fuel (CNG and gasoline) spark ignition (SI) engine model (EBSIEM) here is used for analysis of bi-fuel SI engines. Since, the first law of thermodynamic (the FLT), alone is not able to afford an appropriate comprehension into engine operations. Therefore, this thesis concentrates on the SI engine operation investigation using the developed engine model by the second law of thermodynamic (the SLT) or exergy analysis outlook (exergy based SI engine model (EBSIEM)) In this thesis, an efficient approach is presented for the prediction of total availability, brake specific CO (BSCO), brake specific NOx (BSNOx) and brake torque for bi-fuel engine (CNG and gasoline) using an artificial neural network (ANN) model based on exergy based SI engine (EBSIEM) (ANN-EBSIEM) as an emulator to speed up the optimisation processes. In the other words, the use of a well trained an ANN is ordinarily much faster than mathematical models or conventional simulation programs for prediction. The constrained particle swarm optimisation (CPSO)-EBSIEM (EBSIEMO) was capable of optimising the model parameters for the engine performance. The optimisation results based upon availability analysis (the SLT) due to analysing availability terms, specifically availability destruction (that measured engine irreversibilties) are more regarded with higher priority compared to the FLT analysis.

Page generated in 0.0764 seconds