Spelling suggestions: "subject:"artificial nucleases"" "subject:"artificial shnucleases""
1 |
Développement de nouvelles approches d’édition du génome à l’aide de nucléases artificielles (TALENs et CRISPR/Cas9) / New genome editing approaches development using artificial nucleases (TALEN and CRISPR/Cas9)Charpentier, Marine 19 December 2016 (has links)
L’édition du génome repose sur la création de cassures double brin à un endroit précis du génome à l’aide de nucléases artificielles (ZFN, TALEN, CRISPR/Cas9) et sur les différents systèmes de réparation que la cellule va mettre en place pour réparer ces dommages. Les deux systèmes de réparation principaux sont le NHEJ (Non Homologous End Joining) et la RH (Recombinaison Homologue). Le NHEJ consiste en une ligation directe des extrémités de la coupure pouvant induire de petites insertions ou délétions avant la ligation. Ces mutations, si elles sont introduites dans un exon, vont modifier le cadre de lecture et pouvoir inactiver le gène cible (Knock Out). La RH permet la réparation de la cassure en recopiant les informations présentes sur la chromatide soeur. Si un ADN exogène comportant des homologies avec la séquence à réparer est inséré avec les nucléases artificielles, la cellule peut le prendre comme matrice de réparation, il est ainsi possible d’insérer n’importe quelle mutation ou transgène de manière précise (Knock In). Ici, différentes stratégies ont été développées pour optimiser ces approches d’édition du génome. Le couplage du domaine Nter de la protéine CtIP à la nucléase Cas9 permet d’augmenter le taux d’insertion par homologie d’un transgène au site de coupure. Le couplage de l’exonucléase Trex2 à la nucléase Cas9 nickase permet quant à lui d’augmenter le taux de mutation après coupure. Ces nouvelles approches peuvent être largement utilisées et permettent de faciliter l’édition du génome. / Genome editing relies on the ability of artificial nucleases (TALEN or CRISPR/Cas9 system) to induce double strand break into a precise and unique sequence in a whole genome and on the different DNA repair system. The two major DNA repair systems are NHEJ (Non Homologous End Joining) and HR (Homologous Recombination). NHEJ consists on DNA end direct ligation. This system can lead to deletion or insertion at the cut site. These mutations, when induced in an exon, can induce reading frame change and gene inactivation (Knock out). HR consists on the use of sister chromatid to copy lost information in order to complete the double strand break. If an exogenous DNA with homologies with the targeted DNA is inserted with artificial nucleases, it can be used as a template and can permit to introduce any transgene at the cut site (Knock In). In this work, different strategies were used to optimize genome editing. By fusing Nter part of CtIP to Cas9, the KI rate of an exogenous DNA is increased and by fusing Trex2 exonuclease to Cas9, the mutation rate induced is also increased. These two approaches can be widely used to improve genome editing strategies.
|
2 |
Studies On Copper Complexes Showing DNA Cleavage ActivityThomas, Anitha M 01 1900 (has links) (PDF)
No description available.
|
3 |
Síntese de potenciais nucleases artificiais derivadas do alcalóide (+/-)-tripargina e síntese total da lingbiabelina M / Synthesis of potential artificial nucleases derived from the alkaloid (+/-)-trypargine and total synthesis of Lyngbyabellin M.Pirovani, Rodrigo Vezula, 1984- 26 August 2018 (has links)
Orientador: Ronaldo Aloise Pilli / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T12:56:24Z (GMT). No. of bitstreams: 1
Pirovani_RodrigoVezula_D.pdf: 8130990 bytes, checksum: 09b4b459a43a3e2d8f59756e8bcc77bc (MD5)
Previous issue date: 2014 / Resumo: No capitulo um, apresentamos o planejamento e a síntese de nucleases artificiais baseadas na estrutura da (+/-)-tripargina (19), que poderia intercalar no ADN e apresenta um grupo guanidínico que pode se ligar a grupos fosfatos. Esta foi preparada usando uma estratégia desenvolvida no nosso laboratório em escala multigramas. Dois novos análogos contendo um resíduo guanidínico adicional foram preparados, visto que estes podem aumentar a atividade catalítica desses compostos. O derivado 1,2-bisguanilado 20 foi preparado em 8 etapas com 37% de rendimento global. O análogo 1,9-bisguanilado 21 foi sintetizado com 13% de rendimento para 10 etapas. Também foram preparados três análogos 22-24 contendo uma cadeia hidroxílica lateral em bons rendimentos totais (55, 52 e 31%, respectivamente) a partir do ácido 4-aminoburitírico, bem como três intermediários avançados 70d-72d com duas cadeias guanidínicas e uma cadeia hidroxílica. Estes últimos foram preparados em 12 etapas a partir da triptamina em rendimentos globais variando entre 9-14%. Apesar dos esforços, não encontramos uma condição em que observássemos a atividade catalítica para a (+/-)-tripargina (19) e os derivados bisguanilados 20 e 21, mesmo tendo sido observado que se tenha visto por titulação usando-se RMN-31P uma interação supramolecular entre 19 e o p-nitrofenilfosfato de sódio, com predominância do complexo 1:1 em solução. No capítulo dois, descrevemos a síntese convergente da lingbiabelina M (95) com a finalidade de elucidar sua estrutura tridimensional. Pela estratégia inicial, esta foi dividida em três fragmentos principais: dois deles continham anéis tiazólicos 101 e 106 e foram preparados usando-se uma química clássica para a formação desses heterociclos. A parte policetídica foi sintetizada aplicando-se a metodologia de Masamune para se obter o ácido 107 em 19% de rendimento para 6 etapas. Para finalizar a síntese, os fragmentos 101, 106 e 107 foram acoplados em 49% de rendimento para 6 etapas. Pode-se, assim, confirmar que o produto natural 95 apresenta a esterioquímica (2S, 3S, 14R, 20S) proposta por Gerwick e colaboradores quando de seu isolamento / Abstract: In chapter one, the design and synthesis of artificial nucleases based on the structure of (+/-)-trypargine (19) are introduced. These compounds which contain a guanidine group known to be involved in molecular recognition in biological systems could present the propensity to insert into DNA. Two new analogues containing an additional guanidinic group were prepared, since these may enhance the catalytic activity of these compounds. 1,2-Bisguanylated compound 20 was prepared in 8 steps in 37% overall yield. The analogous 1,9-bisguanylated 21 was synthesized in 13% global yield over 10 steps. Three more analogs 22-24 containing a hydroxylic side chain were prepared in good overall yields (55, 52 and 31%, respectively) from 4-aminoburitiric acid. The synthesis of three advanced intermediates 70d-72d with two guanidinic groups and one hydroxylic chain in 13 steps from tryptamine (31) in overall yields ranging from 9-14% is also disclosed. Despite all efforts, we were not able to find a condition to observe the catalytic activity for (+/-)-trypargine (19) and bisguanylated derivatives 20 and 21, although some supramolecular interaction was observed by 31P-NMR titration between 19 and the p-nitrophenylphosphate sodium salt, predominantly a 1:1 complex in solution. In chapter two, we have described the convergent synthesis of lyngbyabellin M (95) in order to elucidate its stereochemical nature. By retrosynthetic analysis, our target was divided into three main portions: two of them contained thiazole rings 101 and 106, which were prepared using traditional hetericyclic chemistry. The polyketide core was synthesized through the Masamune anti-aldol reaction, giving acid 107 in 19% overall yield over 6 steps. To complete the synthesis, the fragments 101, 106 and 107 were coupled in 49% yield over 6 steps. Thus, we confirmed that the natural product 95 has the stereochemistry (2S, 3S, 14R, 20S) proposed by Gerwick et al, as described in their work of isolation / Doutorado / Quimica Organica / Doutor em Ciências
|
Page generated in 0.0466 seconds