• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 344
  • 52
  • 46
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 25
  • 4
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 564
  • 564
  • 181
  • 137
  • 91
  • 70
  • 69
  • 67
  • 63
  • 58
  • 57
  • 51
  • 49
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Variáveis canônicas não singulares e o movimento rotacional de satélites artificiais /

Simal Moreira, Leonardo. January 2006 (has links)
Orientador: Maria Cecília F. P. S. Zanardi / Banca: Rodolpho Vilhena de Moraes / Banca: Sandro da Silva Fernandes / Resumo: A atitude de um satélite artificial representa sua orientação no espaço, de modo que através da atitude pode-se conhecer a orientação espacial do satélite pela relação entre dois sistemas de coordenadas, um dels fixo no corpo do setélite e o outro associado com umsistema de referência inercial. Apesar da atitude ser bem representada por vários conjuntos de variáveis, todos estes apresentam limitações em sua utilização. Focaliza-se neste trabalho um conjunto de variáveis canônicas não singulares, aplicáveis ao movimento racional de satélites artificiais. Estas variáveis são úteis para o caso em que o vetor momento angular de rotação coincide com o maior momento principal de inércia do satélite. As equações dinâmicas do movimento rotacional são deduzidas pelo formalismo hamiltoniano e então integradas para análise do movimento rotacional livre de torques externos. Soluções analíticas aproximadas são obtidas e comparadas com as soluções gerais, representadas em funções elípticas, e com soluções numéricas. A Hamiltoniana média associada ao Torque de Gradiente de Gravidade é também incluida e as equações diferenciais do movimento pertubado são deduzidas em termos das variáveis não singulares. A integração analítica e numérica destas equações permite uma análise qualitativa e quantitativa das variáveis não singulares utilizadas para o movimento rotacional, quando se considera a pertubação provocada pelo Torque da Gradiente de Gravidade. Ao mesmo tempo esta análise aponta para limitações de intervalos de tempo em que algumas soluções devem ser utilizadas. Aplicações são realizadas para satélites com características similares as dos Satélites Brasileirs de Coleta de Dados (SCD1 e SCD2). / Abstract: The attitude of an artificial satellite represents its orientation in the space, in way that through the attitude can be known the spatial orientation of the satellite for the relation between two systems of coordinates, one of them fixed in the satellite and other associate with an Inertial Referencce System. Many sets of variables are used to represent the satellite attitude, but some of them present limitations in its use. A set of non-singular canonical variables, applicable to the rotational motion of artificial satellites, is focused in this work. Thse variables are useful for the case where the rotational angular momentum vector coincides with the biggest principal moment of inertia of the satellite. The dynamic equations of the rotational motion are deduced by the Hamiltonian formalism and then they are integrated for the analysis of the torque-free rotational motion. Approximated analytical solutions are gotten and compared with the general solutions and numerical solutions. The associated mean Hamiltonian to the Gravity Gradient Torque also enclosed and the differential equations of the motion are deduced for the non-singular variables. The analytical and numeical integration of these equations allow a qualitative and quantitative analysis of these non-singular variables, when the disturbance of the Gravity Gradiente Torque is considered. At the same time this analysis point to limitations of time intervals where some solutions must be used. Applications are done for the satellite with similar characteristics of the Brzilian Satellites of Collection of Data (SCD1 and SCD2). / Mestre
552

An analogue controlled switch-mode power system for a CubeSat

Mutch, Gavin Alexander January 2013 (has links)
Thesis presented in ful lment of the requirements for the degree of Magister Technologiae in Electrical Engineering at the Cape Peninsula University of Technology, 2013 / The power system is essentially one of the most critical subsystems to any satellite, without some form of power system a satellite would simply cease to function. The research within these pages investigates the areas pertaining to satellite power systems with the main focus towards the CubeSat platform. The end objective of this research was the development of a reliable analogue based switch-mode power system for a CubeSat. The research began with an investigation into the CubeSat platform, the space environment and a basic overview of a satellite and its systems. The research then focussed on satellite power systems, focussing primarily on satellite power system topologies and switch-mode power systems. Various components and concepts surrounding the satellite power system were investigate and included the photovoltaic (PV) solar cell, batteries, satellite power system topologies, protection concepts and typical CubeSat power systems. The nal part of the literature review included research into typical CubeSat power systems. The space environment complicates the design of satellite systems. The developed electrical power system harnessed electrical power from a PV solar panel by means of a fractional opencircuit voltage (FOCV) based maximum power point tracker (MPPT) with the use of a SEPIC DC-DC converter. The use of a SEPIC DC-DC converter allowed the system to operate at a greater e ciency than could be expected from linear designs. The requirement for an e cient system was important as the heat generated by the power system could bring rise to dissipation issues, resulting in over-heating of various components. The design took into account component sizing, as larger components would be more prone to damage during the high accelerations and vibrations associated with being launched into space. The use of a MPPT allowed the power system to better utilise the available PV solar panel power, by maintaining the PV solar panel near its optimum operating voltage. The design slid between MPPT and voltage regulation to harness as much power as possible while not over-charging the Lithium polymer battery. The power system consisted of battery under-voltage protection as well as over-current protection for the attached payloads and satellite subsystems. The SEPIC DC-DC converter was selected over other SMPS topologies, as this topology could be used in a 1U and 3U CubeSat with a wide variety of PV solar panel cell con gurations. The bene ts of this SMPS topology are due to the SEPIC DC-DC converter's ability to produce an output voltage greater than, less than or equal to the input voltage (National Semiconductor, 2008; Texas Instruments, 2008a). This, along with the operation of the FOCV based MPPT, allowed the power system to be very exible. The designed FOCV based MPPT could be pre-set to di ering PV solar cell technologies due to the adjustable ratio between the maximum power point voltage, Vmpp, and the open-circuit voltage, Voc of the PV solar panel. It was decided not to select a Buck or Boost DC-DC converter based power system as this would limit the exibility of the system. Additionally, the SEPIC DC-DC converter brings with it the ability to isolate the input and output voltage upon shut down. This isolation is due to the SEPIC DC-DC converter's coupling capacitor and this topologies operation as described by National Semiconductor (2008) and Texas Instruments (2008a). The prototype was versatile allowing a wide variety of PV solar cell technologies to be used. The wide operating voltage of the prototype allowed the design to be connected to a series or parallel combination of solar cells with an operating voltage of 3 V to 20 V. The power handling capability of the prototype per solar panel channel allows the design to be applied to a 1 U or 3 U CubeSat given that the channel did not exceed 10 W. All components of the prototype operated without fault, e ectively charging the Li-poly battery safely while protecting payloads and subsystems. The SEPIC DC-DC converter utilised by the MPPT achieved an e ciency of 71 % under full load and with an input voltage of 10 V.
553

A superconducting quantum interference device (SQUID) magnetometer for nanosatellite space weather missions

Ogunyanda, Kehinde January 2012 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology, 2012 / In order to effectively determine the occurrences of space weather anomalies in near Earth orbit, a highly sensitive space-grade magnetometer system is needed for measuring changes in the Earth’s magnetic field, which is the aftermath of space weather storms. This research is a foundational work, aimed at evaluating a commercial-off-the-shelf (COTS) high temperature DC SQUID (superconducting quantum interference device) magnetometer, and establishing the possibility of using it for space weather applications. A SQUID magnetometer is a magnetic field measuring in strument that produces an electrical signal relative to the sensed external magnetic field intensity.
554

Monitoring rice and sugarcane crop growth in the Pearl River Delta using ENVISAT ASAR data. / CUHK electronic theses & dissertations collection

January 2009 (has links)
First, the field survey campaigns have been carried out from March 22, 2007 to December 27, 2007 around 5-15 days in the interval in the study area of Nansha Island. The field work includes the survey of spatial distribution of various land use and crop types and the ground measurements of the crop biophysical parameters (such as the plant height, leave area index, fresh biomass, and plant water content) and the soil parameters (such as the soil water content and surface roughness parameters) of rice field and sugarcane field. And at the same time, the ENVISAT ASAR data were acquired from March 22, 2007 to December 27, 2007 in the interval of 35 days. During the acquisition dates of the ENVISAT ASAR data, the field surveys were also conducted. / Fourth, the sufficient ground measurements and simultaneous C-band HH- and VV-polarized SAR data of sugarcane crop have enriched the knowledge of understanding the temporal radar scatter mechanisms in sugarcane canopies. The C-band VV-polarized radar backscatters are larger than those of HH-polarization during the sugarcane growth cycle, and the difference is around 0.5 dB to 2 dB. The theoretical model MIMICS was adapted in modeling the scattering terms in sugarcane fields to interpret the temporal behavior of radar backscatters. For more robotic operation, the empirical regression models were used in estimation of the sugarcane LAI and fresh biomass, and mapping the sugarcane growth situation. The accuracies of the sugarcane LAI map and Biomass map are 0.74 and 0.70, respectively. / In conclusion, the C-band ENVISAT ASAR data can be efficiently used in the Pearl River Delta to monitor the crop growth, including the crop spatial distribution, crop acreages, and crop growth situation evaluation. The efficient crop growth monitoring program can not only help instruct the flexible farming actions, but also estimate the crop yield production for the decision-making government. (Abstract shortened by UMI.) / Second, field surveys were combined with the ENVISAT ASAR data to map the agricultural area. The analysis of the temporal radar backscatter characteristics of various land cover categories demonstrated that the time series of C-band SAR data is efficient in separating the eight land cover categories (rice paddy, sugarcane, banana, lotus ponds, mangrove wetlands, fish ponds, seawater, and buildings) in the PRD. The decision tree classifier is also approved to work efficiently on satellite SAR images with an overall accuracy of 77% and the Kappa coefficient of 0.74. The acreages of the land cover categories were also derived from the classification result with accuracies from 70% to 90%. / The Pearl River Delta is a typical developing region. It lies in the cloud-prone and rainy area of south China with multi-species of crops cultured in the agriculture areas. With a goal of developing an efficient, timely and accurate crop growth monitoring program in this area, field measurement, satellite SAR remote sensing technique, quantitative analysis of the crop biophysical parameters, and radar backscatter modeling methods have been integrated to study the multi-temporal and multi-polarized SAR data in estimating plant parameters (LAI, fresh biomass) of rice and sugarcane crop, and mapping the agricultural land cover categories of the study area in the PRD. / Third, in the study of rice growth monitoring, the trends of the relationships between C-band radar backscattering coefficients and rice parameters (plant height, LAI, fresh biomass, et al.) are proved to be constant with the reports in previous literatures. It was demonstrated that the differences between HH- and VV-polarized backscatter are not so evident (around 0.5 dB) in rice paddy canopies during the crop growth cycle. Moreover, by inducting a semi-empirical soil surface scattering component, a modified Water Cloud Model was developed to simulate the radar backscatter in rice crop canopies in different ground background situations (water surface, and soil surface) and to estimate the rice LAI and above ground fresh Biomass with reasonable accuracy. The rice growth conditions were displayed by LAI map and Biomass map generated from the model estimation, and the accuracies of the LAI and Biomass level classification are 0.77 and 0.71. / Wang, Dan. / Advisers: Hui Lin; Jin-Song Chen. / Source: Dissertation Abstracts International, Volume: 72-11, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 132-138). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
555

Remote sensing of forest biomass dynamics using Landsat-derived disturbance and recovery history and lidar data

Pflugmacher, Dirk 23 November 2011 (has links)
Improved monitoring of forest biomass is needed to quantify natural and anthropogenic effects on the terrestrial carbon cycle. Landsat's temporal and spatial coverage, fine spatial grain, and long history of earth observations provide a unique opportunity for measuring biophysical properties of vegetation across large areas and long time scales. However, like other multi-spectral data, the relationship between single-date reflectance and forest biomass weakens under certain canopy conditions. Because the structure and composition of a forest stand at any point in time is linked to the stand's disturbance history, one potential means of enhancing Landsat's spectral relationships with biomass is by including information on vegetation trends prior to the date for which estimates are desired. The purpose of this research was to develop and assess a method that links field data, airborne lidar, and Landsat-derived disturbance and recovery history for mapping of forest biomass and biomass change. Our study area is located in eastern Oregon (US), an area dominated by mixed conifer and single species forests. In Chapter 2, we test and demonstrate the utility of Landsat-derived disturbance and recovery metrics to predict current forest structure (live and dead biomass, basal area, and stand height) for 51 field plots, and compare the results with estimates from airborne lidar and single-date Landsat imagery. To characterize the complex nature of long-term (insect, growth) and short-term (fire, harvest) vegetation changes found in this area, we use annual Landsat time series between 1972 and 2010. This required integrating Landsat data from MSS (1972-1992) and TM/ETM+ (1982-present) sensors. In Chapter 2, we describe a method to bridge spectral differences between Landsat sensors, and therefore extent Landsat time-series analyses back to 1972. In Chapter 3, we extend and automate our approach and develop maps of current (2009) and historic (1993-2009) live forest biomass. We use lidar data for model training and evaluate the results with forest inventory data. We further conduct a sensitivity analysis to determine the effects of forest structure, time-series length, terrain and sampling design on model predictions. Our research showed that including disturbance and recovery trends in empirical models significantly improved predictions of forest biomass, and that the approach can be applied across a larger landscape and across time for estimating biomass change. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Nov. 29, 2011 - Nov. 29, 2012
556

Mobility Management in Next Generation All-IP Based Wireless Systems

Xie, Jiang (Linda) 09 April 2004 (has links)
Next generation wireless systems have an IP-based infrastructure with the support of heterogeneous access technologies. One research challenge for next generation all-IP based wireless systems is to design intelligent mobility management techniques that take advantage of IP-based technologies to achieve global roaming between various access networks. To support global roaming, next generation wireless systems require the integration and interoperation of heterogeneous mobility management techniques. Mobility in a hierarchical structure or multilayered environment should be supported. The objective of this study is to develop new mobility management techniques for global roaming support in next generation all-IP based wireless systems. More specifically, new schemes for location management and paging in Mobile IP for network layer mobility support, and new schemes for location management and handoff management in heterogeneous overlay networks for link layer mobility support are proposed and evaluated. For network layer mobility support, a distributed and dynamic regional location management mechanism for Mobile IP is proposed. Under the proposed scheme, the signaling burden is evenly distributed and the regional network boundary is dynamically adjusted according to the up-to-date mobility and traffic load for each terminal. Next, a user independent paging scheme based on last-known location and mobility rate information for Mobile IP is proposed. The proposed scheme takes the aggregated behavior of all mobile users as the basis for paging. For link layer mobility support, an IP-based system architecture for the integration of heterogeneous mobility management techniques is proposed. Three location management schemes under this IP-based architecture are proposed. All the three schemes support user preference call delivery which is a very important feature of next generation wireless communications. A threshold-based enhancement method is also proposed to further improve the system performance. Finally, a hybrid resource allocation scheme for handoff management in wireless overlay networks is proposed. Under this scheme, the overall system resources can be optimally allocated when mobile users are covered by multiple overlay networks.
557

Autonomous Orbit Estimation For Near Earth Satellites Using Horizon Scanners

Nagarajan, N 07 1900 (has links)
Autonomous navigation is the determination of satellites position and velocity vectors onboard the satellite, using the measurements available onboard. The orbital information of a satellite needs to be obtained to support different house keeping operations such as routine tracking for health monitoring, payload data processing and annotation, orbit manoeuver planning, and prediction of intrusion in various sensors' field of view by celestial bodies like Sun, Moon etc. Determination of the satellites orbital parameters is done in a number of ways using a variety of measurements. These measurements may originate from ground based systems as range and range rate measurements, or from another satellite as in the case of GPS (Global Positioning System) and TDUSS (Tracking Data Relay Satellite Systems), or from the same satellite by using sensors like horizon sensor^ sun sensor, star tracker, landmark tracker etc. Depending upon the measurement errors, sampling rates, and adequacy of the estimation scheme, the navigation accuracy can be anywhere in the range of 10m - 10 kms in absolute location. A wide variety of tracking sensors have been proposed in the literature for autonomous navigation. They are broadly classified as (1) Satellite-satellite tracking, (2) Ground- satellite tracking, (3) fully autonomous tracking. Of the various navigation sensors, it may be cost effective to use existing onboard sensors which are well proven in space. Hence, in the current thesis, the Horizon scanner is employed as the primary navigation sensor-. It has been shown in the literature that by using horizon sensors and gyros, a high accuracy pointing of the order of .01 - .03 deg can be achieved in the case of low earth orbits. Motivated by such a fact, the current thesis deals with autonomous orbit determination using measurements from the horizon sensors with the assumption that the attitude is known to the above quoted accuracies. The horizon scanners are mounted on either side of the yaw axis in the pitch yaw plane at an angle of 70 deg with respect to the yaw axis. The Field Of View (FOV) moves about the scanner axis on a cone of 45 deg half cone angle. During each scan, the FOV generates two horizon points, one at the space-Earth entry and the other at the Earth-space exit. The horizon points, therefore, lie• on the edge of the Earth disc seen by the satellite. For a spherical earth, a minimum of three such horizon points are needed to estimate the angular radius and the center of the circular horizon disc. Since a total of four horizon points are available from a pair of scanners, they can be used to extract the satellite-earth distance and direction.These horizon points are corrupted by noise due to uncertainties in the Earth's radiation pattern, detector mechanism, the truncation and roundoff errors due to digitisation of the measurements. Owing to the finite spin rate of the scanning mechanism, the measurements are available at discrete time intervals. Thus a filtering algorithm with appropriate state dynamics becomes essential to handle the •noise in the measurements, to obtain the best estimate and to propagate the state between the measurements. The orbit of a low earth satellite can be represented by either a state vector (position and velocity vectors in inertial frame) or Keplerian elements. The choice depends upon the available processors, functions and the end use of the estimated orbit information. It is shown in the thesis that position and velocity vectors in inertial frame or the position vector in local reference frame, do result in a simplified, state representation. By using the f and g series method for inertial position and velocity, the state propagation is achieved in linear form. i.e. Xk+1 = AXK where X is the state (position, velocity) and A the state transition matrix derived from 'f' and 'g' series. The configuration of a 3 axis stabilised spacecraft with two horizon scanners is used to simulate the measurements. As a step towards establishing the feasibility of extracting the orbital parameters, the governing equations are formulated to compute the satellite-earth vector from the four horizon points generated by a pair of Horizon Scanners in the presence of measurement noise. Using these derived satellite-earth vectors as measurements, Kalman filter equations are developed, where both the state and measurements equations are linear. Based on simulations, it is shown that a position accuracy of about 2 kms can be achieved. Additionally, the effect of sudden disturbances like substantial slewing of the solar panels prior and after the payload operations are also analysed. It is shown that a relatively simple Low Pass Filter (LPF) in the measurements loop with a cut-off frequency of 10 Wo (Wo = orbital frequency) effectively suppresses the high frequency effects from sudden disturbances which otherwise camouflage the navigational information content of the signal. Then Kalman filter can continue to estimate the orbit with the same kind of accuracy as before without recourse to re-tuning of covariance matrices. Having established the feasibility of extracting the orbit information, the next step is to treat the measurements in its original form, namely, the non-linear form. The entry or exit timing pulses generated by the scanner when multiplied by the scan rate yield entry or exit azimuth angles in the scanner frame of reference, which in turn represents an effective measurement variable. These azimuth angles are obtained as inverse trigonometric functions of the satellite-earth vector. Thus the horizon scanner measurements are non-linear functions of the orbital state. The analytical equations for the horizon points as seen in the body frame are derived, first for a spherical earth case. To account for the oblate shape of the earth, a simple one step correction algorithm is developed to calculate the horizon points. The horizon points calculated from this simple algorithm matches well with the ones from accurate model within a bound of 5%. Since the horizon points (measurements) are non-linear functions of the state, an Extended Kalman Filter (EKF) is employed for state estimation. Through various simulation runs, it is observed that the along track state has got poor observability when the four horizon points are treated as measurements in their original form, as against the derived satellite-earth vector in the earlier strategy. This is also substantiated by means of condition number of the observability matrix. In order to examine this problem in detail, the observability of the three modes such as along-track, radial, and cross-track components (i.e. the local orbit frame of reference) are analysed. This difficulty in observability is obviated when an additional sensor is used in the roll-yaw plane. Subsequently the simulation studies are carried out with two scanners in pitch-yaw plane and one scanner in the roll-yaw plane (ie. a total of 6 horizon points at each time). Based on the simulations, it is shown that the achievable accuracy in absolute position is about 2 kms.- Since the scanner in the roll-yaw plane is susceptible to dazzling by Sun, the effect of data breaks due to sensor inhibition is also analysed. It is further established that such data breaks do not improve the accuracy of the estimates of the along-track component during the transient phase. However, filter does not diverge during this period. Following the analysis of the' filter performance, influence of Earth's oblateness on the measurement model studied. It is observed that the error in horizon points, due to spherical Earth approximation behave like a sinusoid of twice the orbital frequency alongwith a bias of about 0.21° in the case of a 900 kms sun synchronous orbit. The error in the 6 horizon points is shown to give rise to 6 sinusoids. Since the measurement model for a spherical earth is the simplest one, the feasibility of estimating these sinusoids along with the orbital state forms the next part of the thesis. Each sinusoid along with the bias is represented as a 3 state recursive equation in the following form where i refers to the ith sinusoid and T the sampling interval. The augmented or composite state variable X consists of bias, Sine and Cosine components of the sinusoids. The 6 sinusoids together with the three dimensional orbital position vector in local coordinate frame then lead to a 21 state augmented Kalman Filter. With the 21 state filter, observability problems are experienced. Hence the magnetic field strength, which is a function of radial distance as measured by an onboard magnetometer is proposed as additional measurement. Subsequently, on using 6 horizon point measurements and the radial distance measurements obtained from a magnetometer and taking advantage of relationships between sinusoids, it is shown that a ten state filter (ie. 3 local orbital states, one bias and 3 zero mean sinusoids) can effectively function as an onboard orbit filter. The filter performance is investigated for circular as well as low eccentricity orbits. The 10-state filter is shown to exhibit a lag while following the radial component in case of low eccentricity orbits. This deficiency is overcome by introducing two more states, namely the radial velocity and acceleration thus resulting in a 12-state filter. Simulation studies reveal that the 12-state filter performance is very good for low eccentricity orbits. The lag observed in 10-state filter is totally removed. Besides, the 12-state filter is able to follow the changes in orbit due to orbital manoeuvers which are part of orbit acquisition plans for any mission.
558

Design and implementation of linear robust networked control systems

Mkondweni, Ncedo Sandiso January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree Doctor of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology, 2013 / Networked Control Systems is a control system where the plant and the controller exchange information via a shared communication network and the network is considered as part of the closed loop control system. Unfortunately the network introduces network induced random varying time delays and data packet loss amongst the communication network imperfections. The network delays are considered to be between the controller and the actuator and between the sensor and the controller. These network imperfections degrade the performance of the closed loop control system and result in closed loop system instability. The complexity of measuring the communication network imperfection in networked control systems makes it difficult for the control engineers to develop methods for design of controllers that can incorporate and compensate these imperfections in order to improve the performance of the networked control systems. In this thesis a co-simulation toolset called LabNS2 is developed to address the first problem of measuring the communication network imperfections by providing an ideal environment that can be used to investigate the influence of network time delays or packet loss. The software environment of the toolset is based on LabVIEWTM and Network Simulator Version 2 (NS2). A new robust predictive optimal controller design method is developed to address the problem of the destabilising effect of the network induced time delay between the controller and the actuator. The design approach is based on time shifting of the optimisation horizon and a state predictor. The design of the controller is based on a model of the plant with delay in the control vector equal to the delay between the controller and the actuator or to the sum of the delays between the controller and the actuator and between the sensor and the controller. The time shifting approach allows the design of the controller to be performed for a model without time delay. Then the control action is based on the future values of the state space vector estimates. The state predictor is developed to predict these future values of the state using the present and past values of the state estimates and control actions. This technique is made possible by the use of the plant model Transition Matrix. A Discrete Kalman Filter is modified to address the problem of the destabilising effect of the network induced time delay between the sensor and the controller. An additional state estimation vector is added to the filter estimate at every current moment of time. iv The developed methods are implemented for networked control of a dish antenna driven by two stepper motors. The outcomes of the thesis can be used for the education and fundamental research purposes, but the developed control strategies have significant sense towards the Square Kilometer Array projects and satellite systems industry. / National Research Foundation
559

Statistical downscaling of MODIS thermal imagery to Landsat 5tm + resolutions

Webber, J. Jeremy III 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
560

Use of two-way time transfer measurements to improve geostationary satellite navigation :

Dainty, Benjamin G. 2007 March 1900 (has links)
Thesis (M.S.)-- Air Force Institute of Technology. / The original document contains color images.

Page generated in 0.0617 seconds