• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 9
  • 7
  • 1
  • Tagged with
  • 33
  • 17
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

"A system for the intracellular generation of triple helix-forming oligonucleotides (TFOs) and the sequence-specific inhibition of human MCP-1 gene expression"

Kautz, Kordula Unknown Date (has links)
Univ., Diss., 2006--Frankfurt (Main) / Zsfassung in engl. und dt. Sprache
22

Targeting the Bacterial Fatty-Acid Synthesis Pathway: Towards the Development of Slow-Onset Inhibitors and the Characterisation of Protein-Protein Interactions / Die bakterielle Fettsäurebiosynthese als Zielobjekt zur Entwicklung langsam bindender Inhibitoren und zur Charakterisierung von Protein-Protein-Wechselwirkungen

Eltschkner, Sandra January 2020 (has links) (PDF)
A continuous arms race between the development of novel antibiotics and the evolution of corresponding resistance mechanisms in bacteria has been observed, since antibiotic agents like arsphenamines (e.g. Salvarsan, developed by Paul Ehrlich [1]), sulphonamides (e.g. Prontosil, Gerhard Domagk [2]) and penicillin (Alexander Fleming [3]) were first applied to effectively cure bacterial infections in the early 20th century. The rapid emergence of resistances in contrast to the currently lagging discovery of antibiotics displays a severe threat to human health. Some serious infectious diseases, such as tuberculosis or melioidosis, which were either thought to be an issue only in Third-World countries in case of tuberculosis, or regionally restricted with respect to melioidosis, are now on the rise to expand to other areas. In contrast, methicillin-resistant Staphylococcus aureus (MRSA) is already present in clinical setups all over the world and causes severe infections in immunocompromised patients. Thus, there is an urgent need for new and effective antimicrobial agents, which impair vital functions of the pathogen’s metabolism. One central metabolic pathway is represented by the bacterial fatty-acid synthesis pathway (FAS II), which is essential for the synthesis of long and branched-chain fatty acids, as well as mycolic acids. These substances play a major role as modulating components of the properties of the most important protective barrier – the cell envelope. The integrity of the bacterial cell wall and the associated membrane(s) is crucial for cell growth and for protection against physical strain, intrusion of antibiotic agents and regulation of uptake of ions and other small molecules. Thus, this central pathway represents a promising target for antibiotic action against pathogens to combat infectious diseases. The last and rate-limiting step is catalysed by the trans-2-enoyl-ACP reductase (ENR) FabI or InhA (in mycobacteria), which has been demonstrated to be a valuable target for drug design and can be addressed, amongst others, by diphenyl ether (DPE) compounds, derived from triclosan (TCL) – the first one of this class which was discovered to bind to ENR enzymes [4, 5]. Based on this scaffold, inhibitors containing different combinations of substituents at crucial positions, as well as a novel type of substituent at position five were investigated regarding their binding behaviour towards the Burkholderia pseudomallei and Mycobacterium tuberculosis ENR enzymes bpFabI and InhA, respectively, by structural, kinetic and in-vivo experiments. Generally, substitution patterns modulate the association and dissociation velocities of the different ENR inhibitors in the context of the two-step slow-onset binding mechanism, which is observed for both enzymes. These alterations in the rapidity of complex formation and decomposition have a crucial impact on the residence time of a compound and hence, on the pharmacokinetic properties of potential drug candidates. For example, the substituents at the 2’-position of the DPE scaffold influence the ground- and transition state stability during the binding process to bpFabI, whereas 4’-substituents primarily alter the transition state [6]. The novel triazole group attached to the 5-position of the scaffold, targeting the hydrophobic part of the substrate-binding pocket in InhA, significantly enhances the energy barrier of the transition state of inhibitor binding [7] and decelerates the association- as well as the dissociation processes. Combinations with different substituents at the 2’-position can enhance or diminish this effect, e.g. by ground-state stabilisation, which will result in an increased residence time of the respective inhibitor on InhA. Further structural investigations carried out in this work, confirm the proposed binding mode of a customised saFabI inhibitor [8], carrying a pyridone moiety on the DPE scaffold to expand interactions with the protein environment. Structural and preliminary kinetic data confirm the binding of the same inhibitor to InhA in a related fashion. Comparisons with structures of the ENR inhibitor AFN-1252 [9] bound to ENR enzymes from other organisms, addressing a similar region as the pyridone-moiety of the DPE inhibitor, suggest that also the DPE inhibitor bears the potential to display binding to homologues of saFabI and InhA and may be optimised accordingly. Both of the newly investigated substituents, the pyridone moiety at the 4’-position as well as the 5-triazole substituent, provide a good starting point to modify the DPE scaffold also towards improved kinetic properties against ENR enzymes other than the herein studied and combining both groups on the DPE scaffold may have beneficial effects. The understanding of the underlying binding mechanism is a crucial factor to promote the dedicated design of inhibitors with superior pharmacokinetic characteristics. A second target for a structure-based drug-design approach is the interaction surface between ENR enzymes and the acyl-carrier protein (ACP), which delivers the growing acyl chain to each distinct enzyme of the dissociated FAS-II system and presumably recognises its respective interaction partner via electrostatic contacts. The interface between saACP and saFabI was investigated using different approaches including crosslinking experiments and the design of fusion constructs connecting the ACP and the FabI subunits via a flexible linker region of varying lengths and compositions. The crosslinking studies confirmed a set of residues to be part of the contact interface of a previously proposed complex model [10] and displayed high crosslinking efficiency of saACP to saFabI when mutated to cysteine residues. However, crystals of the complex obtained from either the single components, or of the fusion constructs usually displayed weak diffraction, which supports the assumption that complex formation is highly transient. To obtain ordered crystals for structural characterisation of the complex it is necessary to trap the complex in a fixed state, e.g. by a high-affinity substrate attached to ACP [11], which abolishes rapid complex dissociation. For this purpose, acyl-coupled long-residence time inhibitors might be a valuable tool to elucidate the detailed architecture of the ACP-FabI interface. This may provide a novel basis for the development of inhibitors that specifically target the FAS-II biosynthesis pathway. / Seit Beginn der Anwendung antibiotischer Substanzen wie Arsphenaminen, z.B. Salvarsan, entwickelt von Paul Ehrlich [1], Sulfonamiden, z.B. Prontosil, dessen antibakterielle Wirksamkeit durch Gerhard Domagk nachgewiesen wurde [2], oder des von Alexander Fleming entdeckten Penicillins [3] zur effektiven Bekämpfung von Infektionskrankheiten Anfang des 20. Jahrhunderts findet ein kontinuierliches Wettrüsten zwischen der Entstehung von Antibiotikaresistenzen in Bakterien und der Entwicklung neuer Antibiotika statt. Vor allem die zügige Entstehung von Resistenzen im Gegensatz zum eher stockenden Fortschritt der Entdeckung neuer Antibiotika stellt ein ernstzunehmendes Risiko für die menschliche Gesundheit dar. Einige stark lebensbedrohliche Infektionskrankheiten, darunter Tuberkulose und Melioidose, erfahren dadurch eine erhöhte Verbreitung. Ein Anstieg der Zahl der Tuberkuloseerkrankungen in Gebieten, in denen die Krankheit bereits als ausgerottet galt, beispielsweise in Europa; oder im Falle der Melioidose, eine Verbreitung in Gebiete, in denen die Krankheitserreger natürlicherweise nicht vorkommen; sind u.a. die Folgen fehlender Wirkstoffe zur Bekämpfung resistenter Stämme. Methicillinresistente Staphylococcus-aureus- (MRSA-) Stämme sind hingegen bereits fast weltweit in Krankenhäusern verbreitet und gelten dort als Quelle schwerer Infektionen, die vor allem für Patienten mit geschwächtem Immunsystem eine ernsthafte Bedrohung darstellen. Die mannigfaltigen Vorkommen resistenter Erreger und die eingeschränkten Behandlungsmöglichkeiten dadurch verursachter Infektionen machen die Entwicklung neuer, wirksamer Antibiotika dringend notwendig. Ein zentraler Stoffwechselweg der Bakterien ist die Fettsäurebiosynthese II, die im Hinblick auf die Herstellung lang- und verzweigtkettiger Fettsäuren sowie von Mykolsäuren essentiell ist. Die Zusammensetzung der Fettsäuren trägt maßgeblich zur Funktionsfähigkeit der unentbehrlichen Schutzbarriere der Zelle – nämlich der Zellhülle – bei. Eine intakte Zellwand und deren assoziierte Membranen schützen die Zelle vor physikalischem Stress, vor dem Eindringen antibiotischer Substanzen und regulieren die Aufnahme anderer Kleinmoleküle und Ionen. Genau aus diesem Grunde stellt die Fettsäurebiosynthese ein attraktives Ziel für die Entwicklung von Antibiotika dar. Die Enoyl-ACP-Reduktase (ENR), welche den letzten und geschwindigkeitsbestimmenden Schritt des Synthesezyklus katalysiert, wurde als hervorragendes Zielmolekül identifiziert und wird unter anderem von Diphenylethern gehemmt. Diese Verbindungen sind von Triclosan abgeleitet, dessen Bindung an ENR-Enzyme als erstem Vertreter dieser Stoffklasse nachgewiesen werden konnte [4, 5]. Basierend auf dem Diphenylethergrundgerüst von Triclosan wurden Inhibitoren mit unterschiedlichen Substitutionsmustern bezüglich ihrer Bindungseigenschaften an die ENR-Enzyme von Burkholderia pseudomallei (bpFabI) und Mycobacterium tuberculosis (InhA) untersucht. Kritische Positionen dieses Grundgerüstes wurden mit verschiedenen, chemischen Gruppen versehen und die Bindung an diese beiden Enzyme anschließend strukturell, kinetisch und am lebenden Organismus charakterisiert. In beiden Fällen üben die Substitutionsmuster einen beträchtlichen Einfluss auf die Assoziations- und Dissoziationsgeschwindigkeiten der verschiedenen Inhibitoren im Rahmen des verlangsamten Zweischrittassoziationsmechanismus aus, welche wiederum die Verweildauer des Inhibitors am Enzym und dessen pharmakokinetische Eigenschaften bestimmen. Die Beschaffenheit der 2‘-Substituenten beeinflusst beispielsweise die Stabilität des Grund- sowie des Übergangszustandes im Bindungsgeschehen an bpFabI, wohingegen 4‘-Substituenten hauptsächlich zu Stabilitätsänderungen im Übergangszustand beitragen [6]. Die Einführung des Triazolsubstituenten an der 5-Position des Diphenylethergerüsts führt zu einer signifikanten Erhöhung der Energiebarriere des Übergangszustandes im Bindungsprozess an InhA [7], was im Rückschluss zu einer ebenfalls verlangsamten Dissoziation des Enzym-Inhibitor-Komplexes führt. Zusätzlich wird dieser Effekt durch die Beschaffenheit des entsprechenden Substituenten an der 2‘-Position noch verstärkt oder abgeschwächt. Dies erfolgt beispielsweise durch eine Stabilisierung des Grundzustandes und eine daraus resultierende, verlängerte Verweildauer des Inhibitors am Enzym. Weitere, strukturelle Untersuchungen im Rahmen dieser Arbeit konnten den vorgeschlagenen Bindungsmodus [8] des neuartigen, speziell auf das ENR-Enzym von Staphylococcus aureus (saFabI) zugeschnittenen Inhibitors „55JS“ (auch „SKTS1“) bestätigen. Dieser Diphenyletherinhibitor besitzt an der 4‘-Position einen Pyridonring, welcher die Wechselwirkungen mit dem Enzym verstärken soll. Aus den strukturellen und vorläufigen, kinetischen Daten geht hervor, dass dieser Inhibitor ebenfalls und in ähnlicher Weise an InhA bindet. Außerdem legt ein Vergleich mit Komplexstrukturen verschiedener ENRs in Verbindung mit AFN-1252 [9] die Vermutung nahe, dass auch 55JS an weitere ENR-Homologe binden könnte; denn jener Teil des AFN-1252-Inhibitors, der sich räumlich mit dem Pyridonring von 55JS überlagert, geht mit derselben Region im Protein ähnliche Wechselwirkungen ein. Es ist daher möglich, dass dieser Inhibitor das Potential birgt, durch entsprechende Optimierung als Wirkstoff gegen andere Pathogene zum Einsatz zu gelangen. Beide dieser neuartigen, funktionellen Gruppen, die Triazol- und die Pyridongruppe, stellen einen guten Ansatzpunkt für die Weiterentwicklung von Diphenylethern bezüglich verbesserter kinetischer Eigenschaften gegenüber ENR-Enzymen dar. Ein weiterer, interessanter Ansatz für die strukturbasierte Wirkstoffentwicklung ist durch die Interaktionsfläche zwischen ENR-Enzymen und dem Acyl-Carrier-Protein (ACP) gegeben. ACP transportiert die naszierende Acylkette von einem zum nächsten Enzym des dissoziierten Fettsäurebiosynthesezyklus, welche es wahrscheinlich anhand elektrostatischer Interaktionen erkennt. Die Kontaktfläche zwischen saACP und saFabI wurde hier mittels verschiedener Ansätze untersucht, die sowohl Crosslinking-Experimente als auch die Generierung von Fusionsproteinen umfassten. In den verschiedenen Fusionskonstrukten wurden das ACP- und das ENR-Protein durch eine flexible Aminosäurekette unterschiedlicher Längen und Zusammensetzungen miteinander verbunden. Durch die Crosslinking-Experimente konnten Aminosäuren identifiziert werden, welche einen Teil einer vorgeschlagenen Interaktionsfläche [10] ausmachen und tatsächlich eine hohe Vernetzungseffizienz aufwiesen. Proteinkristalle des Komplexes, die entweder beide Einzelkomponenten oder das Fusionsprotein enthielten, zeigten jedoch nur schwache Beugungsmuster. Diese Beobachtung deckt sich mit der Annahme, dass die Komplexbildung äußerst kurzlebig ist. Die intrinsische Flexibilität beider Proteine erhöht zusätzlich die Schwierigkeit, wohlgeordnete Kristalle zu erhalten. Es wird deshalb notwendig sein, den Komplex in einem fixierten Zustand einzufangen. Die Verwendung eines hochaffinen Substrates, welches die Dissoziation des Komplexes unterbindet, beispielsweise ein acylgekoppelter Inhibitor [11] mit langer Verweildauer am Enzym, könnte hier von großem Nutzen sein und es damit erlauben eine detaillierte Kenntnis der ACP-FabI-Interaktionsfläche zu erhalten, die neue Perspektiven für eine gezielte Entwicklung von Inhibitoren der Fettsäurebiosynthese II eröffnen könnten.
23

Fragmentbasiertes Design von p97-Liganden: Identifizierung von Startstrukturen zur Entwicklung von Protein-Protein-Interaktionsinhibitoren für die SHP-Bindestelle der AAA+ ATPase p97 / Fragment-based design of p97-ligands: Identification of starting points for the development of protein-protein-interaction inhibitors targeting the SHP-binding site of the AAA+ ATPase p97

Bothe, Sebastian Helmut January 2021 (has links) (PDF)
Die AAA+ ATPase p97 ist ein essenzielles Protein, das an einer Vielzahl zellulärer Prozesse beteiligt ist und eine Schlüsselrolle in der Protein-Homöostase spielt. Die funktionale Diversität von p97 beruht auf der Interaktion zahlreicher unterschiedlicher Kofaktoren, die vorwiegend an die N-Domäne von p97 binden. Aufgrund seiner Bedeutung in der Regulierung diverser physiologischer und pathologischer Prozesse stellt p97 eine interessante Zielstruktur für die Entwicklung neuer Wirkstoffe dar, die insbesondere in der Krebstherapie von Bedeutung sein könnte. Bekannte p97-Inhibitoren greifen vor allem die ATPase-Funktion des Proteins an. Ein neuer pharmakologischer Ansatz stellt die Inhibierung der Kofaktorbindung an die N-Domäne dar. Ein solcher Protein-Protein-Interaktionsinhibitor wäre nicht nur von therapeutischem Interesse, sondern hätte auch einen besonderen Nutzen für die Entschlüsselung molekularer und zellulärer Funktionen von p97-Kofaktoren. In dieser Arbeit wurde ein fragmentbasierter Ansatz für die Identifizierung von chemischen Startstrukturen für die Entwicklung eines Protein-Protein- Interaktionsinhibitors verfolgt. Als Zielstruktur wurde die SHP-Bindestelle in der N-Domäne gewählt. Die Identifizierung von Liganden erfolgte sowohl durch computergestützte Methoden (insbesondere virtuelles Screening und Molekulardynamik-Simulationen) als auch experimentell durch biophysikalische Techniken (wie Biolayer-Interferometrie, Röntgenstrukturanalyse und ligandbasierte NMR-Techniken). Die Grundlage des computerbasierten Designs stellte eine Analyse der bekannten Kristallstrukturen der p97-Komplexe mit den SHP-Motiven der Kofaktoren UFD1 und Derlin-1 dar. Darüber hinaus dienten Molekulardynamik-Simulationen der Analyse der Wassereigenschaften innerhalb der SHP-Bindestelle. Darauf aufbauend wurden verschiedene Pharmakophormodelle entwickelt, die die Grundlage des im Anschluss durchgeführten virtuellen Screenings und Dockings bildeten. Anhand der Ergebnisse von Molekulardynamik-Simulationen wurden zehn Verbindungen für die experimentelle Validierung ausgewählt. Hiervon konnten zwei Fragmente in STD-NMR- und Biolayer-Interferometrie-Experimenten als Liganden bestätigt werden. In einem parallel durchgeführten biophysikalischen Fragmentscreening mittels Biolayer-Interferometrie wurden unter mehr als 650 Verbindungen 22 identifiziert, die an die N-Domäne binden. 15 dieser Fragmente wurden durch einen orthogonalen STD-NMR-Assay bestätigt. Fünf dieser Verbindungen zeigten Affinitäten mit KD-Werten kleiner 500μMund günstigen Ligandeffizienzen. Des Weiteren konnte die Bindungskinetik und Affinität des in der Literatur als p97-Inhibitor berichteten Naturstoffes Xanthohumol bestimmt und eine Bindung an die N-Domäne bestätigt werden. Zur Identifizierung möglicher Bindestellen dieser fünf Fragmente wurden mixed-solvent Molekulardynamik-Simulationen durchgeführt. Diese ergaben, dass alle Verbindungen die SHP-Bindestelle in der N-Domäne adressieren. Die Regionen fielen mit hot spots der Kofaktorwechselwirkungen zusammen und stellen somit mögliche Ankerpunkte für die Weiterentwicklung dar. Für zwei Fragmente konnten die postulierten Bindestellen mittels Röntgenstrukturanalyse bzw. STD-NMR-Messungen an p97-Alanin-Mutanten bestätigt werden. Die erhaltene Röntgenstruktur ist die erste p97-Struktur, die ein gebundenes Fragment an der N-Domäne zeigt. / The AAA+ATPase p97 is an essential protein involved in numerous cellular pro-cesses and plays a key role in multiple aspects of protein homeostasis. Its functio-nal diversity is mediated through the interaction with a large number of distinctcofactors binding to the N-domain of p97. Due to its significant role in regulatinga variety of physiological responses, p97 has emerged as a potential therapeu-tic target. A small molecule inhibiting the cofactor binding would be importantto dissect the molecular and cellular functions of p97 cofactors, thus helping tounravel their specific role in controlling p97 activity. Such compounds may alsoopen routes to new cancer therapies.In this work, a fragment-based approach was pursued for the identification ofchemical starting points for the development of a protein-protein interaction in-hibitor addressing the SHP binding site. Therefore, computer-assisted methods,such as virtual screenings and molecular dynamics simulations, as well as bio-physical techniques including biolayer interferometry, X-ray crystallography, andligand-based NMR techniques, were applied.The computer-based design started with an analysis of the known p97 crystalstructures in complex with the SHP motifs of cofactors UFD1 and Derlin-1. In ad-dition, molecular dynamics simulations were used to analyze the water proper-ties within the SHP binding site. Based on these results, pharmacophore modelswere developed and utilized in the subsequent virtual screening and dockingprocess. With the help of molecular dynamics simulations, ten compounds wereselected for experimental validation. Two of these were confirmed as ligands inSTD-NMR and biolayer interferometry experiments.In parallel, a biophysical fragment screening of over 650 compounds was perfor-med using the biolayer interferometry method. This led to the identification of22 compounds binding to the N-domain. Fifteen of these fragments were con-firmed in an orthogonal STD-NMR assay. Five compounds showed affinities withKDvalues below 500 μM and favourable ligand efficiencies for further optimiza-tion. Furthermore, the binding kinetics and affinity of xanthohumol, a naturalproduct reported in the literature as a p97 inhibitor, were determined and bin-ding to the N-domain was confirmed. xToidentify possible binding sites of these five fragments, mixed solvent mole-cular dynamics simulations were performed. These revealed that all compoundsaddress the SHP binding site in the N-domain. The regions coincide with hotspots of the cofactor binding and, thus, represent potential anchor points for aprotein-protein interaction inhibitor. For two fragments, the postulated bindingsites were confirmed by X-ray crystallography and STD-NMR measurements onp97 alanine mutants, respectively. The X-ray structure obtained is the first p97structure showing a fragment bound to the N-domain.
24

Towards the development of high affinity InhA and KasA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis / Entwicklung von hoch-affinen InhA und KasA Inhibitoren gegen resistente Stämme von Mycobacterium tuberculosis

Luckner, Sylvia January 2009 (has links) (PDF)
Mycobacterium tuberculosis is the causative agent of tuberculosis and responsible for more than eight million new infections and about two million deaths each year. Novel chemotherapeutics are urgently needed to treat the emerging threat of multi drug resistant and extensively drug resistant strains. Cell wall biosynthesis is a widely used target for chemotherapeutic intervention in bacterial infections. In mycobacteria, the cell wall is comprised of mycolic acids, very long chain fatty acids that provide protection and allow the bacteria to persist in the human macrophage. The type II fatty acid biosynthesis pathway in Mycobacterium tuberculosis synthesizes fatty acids with a length of up to 56 carbon atoms that are the precursors of the critical mycobacterial cell wall components mycolic acids. KasA, the mycobacterial ß-ketoacyl synthase and InhA, the mycobacterial enoyl reductase, are essential enzymes in the fatty acid biosynthesis pathway and validated drug targets. In this work, KasA was expressed in Mycobacterium smegmatis, purified and co-crystallized in complex with the natural thiolactone antibiotic thiolactomycin (TLM). High-resolution crystal structures of KasA and the C171Q KasA variant, which mimics the acyl enzyme intermediate of the enzyme, were solved in absence and presence of bound TLM. The crystal structures reveal how the inhibitor is coordinated by the enzyme and thus specifically pinpoint towards possible modifications to increase the affinity of the compound and develop potent new drugs against tuberculosis. Comparisons between the TLM bound crystal structures explain the preferential binding of TLM to the acylated form of KasA. Furthermore, long polyethylene glycol molecules are bound to KasA that mimic a fatty acid substrate of approximately 40 carbon atoms length. These structures thus provide the first insights into the molecular mechanism of substrate recognition and reveal how a wax-like substance can be accommodated in a cytosolic environment. InhA was purified and co-crystallized in complex with the slow, tight binding inhibitor 2-(o-tolyloxy)-5-hexylphenol (PT70). Two crystal structures of the ternary InhA-NAD+-PT70 were solved and reveal how the inhibitor is bound to the substrate binding pocket. Both structures display an ordered substrate binding loop and corroborate the hypothesis that slow onset inhibition is coupled to loop ordering. Upon loop ordering, the active site entrance is more restricted and the inhibitor is kept inside more tightly. These studies provide additional information on the mechanistic imperatives for slow onset inhibition of enoyl ACP reductases. / Mycobacterium tuberculosis, der Erreger der Tuberkulose ist für mehr als acht Millionen Neu-Infektionen und ungefähr zwei Millionen Todesfälle jedes Jahr verantwortlich. Besonders die Entwicklung von multiresistenten und extrem resistenten Stämmen macht die Entwicklung neuer Medikamente gegen Tuberkulose dringend erforderlich. Die Zellwandbiosynthese ist ein validiertes Ziel für die Chemotherapie bei bakteriellen Infektionen. Bei Mycobakterien besteht die Zellwand zum Großteil aus Mykolsäuren, sehr langkettigen Fettsäuren, die den Bakterien Schutz bieten und ihnen ermöglichen, in Makrophagen zu überleben. Mycobakterien synthetisieren in der Fettsäurebiosynthese II (FAS-II) Fettsäuren bis zu einer Länge von 56 Kohlenstoffatomen, die Bestandteile der Mykolsäuren sind. KasA, die mycobakterielle ß-ketoacyl Synthase und InhA, die mycobakterielle enoyl Reductase, sind essentielle Enzyme der FAS-II und geeignete Ziele für die Entwicklung neuer Antibiotika. In dieser Arbeit wurde KasA in Mycobacterium smegmatis exprimiert und aufgereinigt. Das Protein wurde im Komplex mit dem natürlich vorkommenden Thiolacton-Antibiotikum Thiolactomycin (TLM) co-kristallisiert. Kristallstrukturen von KasA und der C171Q KasA Variante, die das acylierte Enzym-Intermediat darstellt, wurden als apo-Strukturen und im Komplex mit gebundenem TLM aufgeklärt. Die Kristallstrukturen zeigen, wie der Inhibitor an das Enzym gebunden ist und deuten darauf hin, wie das TLM Molekül verändert werden könnte, um seine Affinität für das Protein zu erhöhen und damit ein wirksames Medikament gegen Tuberkulose zu entwickeln. Vergleiche zwischen den TLM gebundenen Kristallstrukturen erklären, warum TLM bevorzugt an die acylierte Form des Enzyms bindet. Des Weiteren sind lange Polyethylenglykol-Moleküle an KasA gebunden, die ein Fettsäuresubstrat einer Länge von etwa 40 Kohlenstoff-Atomen nachahmen. Die Strukturen geben damit zum ersten Mal einen Einblick in den molekularen Mechanismus der Substrat-Erkennung und zeigen, wie eine wachsartige Substanz in einem cytosolischen Umfeld aufgenommen werden kann. InhA wurde aufgereinigt und im Komplex mit dem „slow binding“ Inhibitor 2-(o-tolyloxy)-5-hexylphenol (PT70) co-kristallisiert. Zwei Kristallstrukturen des ternären InhA-NAD+-PT70 Komplexes wurden gelöst und zeigen wie der Inhibitor in der Substratbindetasche gebunden ist. Beide Strukturen, weisen geordnete Substrat-Binde-Loops auf, die den Eingang zur „Active Site“ schließen und damit den gebundenen Inhibitor in der Tasche festhalten. Die Strukturen bestätigen damit die Hypothese, dass „Slow Binding Inhibition“ mit der Ordnung des Loops zusammenhängt. Diese Studien können als Basis für die Entwicklung weiterer „Slow Binding“ Inhibitoren verwendet werden.
25

Entwicklung computergestützter Methoden zur Bewertung von Docking-Lösungen und Entwurf niedermolekularer MIP-Inhibitoren / Development of computer-aided methods for the evaluation of docking poses and design of small-molecule MIP inhibitors

Hein, Michael January 2014 (has links) (PDF)
Dockingbasierte Ansätze zählen zu den wichtigsten Komponenten im virtuellen Screening. Sie dienen der Vorhersage der Ligandposition und -konformation in der Bindetasche sowie der Abschätzung der Bindungsaffinität zum Protein. Bis heute stellt die korrekte Identifizierung proteingebundener Ligandkonformationen ein noch nicht vollständig gelöstes Problem für Scoringfunktionen dar. Der erste Teil der vorliegenden Arbeit ist daher der Entwicklung computergestützter Methoden zur Bewertung von Docking-Lösungen gewidmet. Der Fokus eines ersten Teilprojektes lag auf der Berücksichtigung der Absättigung vergrabener Wasserstoffbrückenakzeptoren (HBA) und -donoren (HBD) bei der Bewertung von Docking-Lösungen. Nicht-abgesättigte vergrabene HBA und HBD stellen einen der Bindungsaffinität abträglichen Beitrag dar, der bis dato aufgrund fehlender Struktur- bzw. Affinitätsdaten in Scoringfunktionen vernachlässigt wird. Im Rahmen der vorliegenden Arbeit wurde auf der Basis einer detaillierten Untersuchung zur Häufigkeit vergrabener nicht-abgesättigter HBA und HBD in hochaufgelösten Protein-Ligand-Komplexen des Hartshorn-Datensatzes eine empirische Filterfunktion („vnaHB“-Filterfunktion) entwickelt, die unerwünschte Ligandbindeposen erkennt und von der Bewertung mittels Scoringfunktionen ausschließt. Der praktische Nutzen der empirischen Filterfunktion wurde für die Scoringfunktionen SFCscore und DSX anhand vorgenerierter Docking-Lösungen des Cheng-Datensatzes untersucht. Die Häufigkeitsuntersuchung zeigt, dass eine Absättigung vergrabener polarer Gruppen in Protein-Ligand-Komplexen für eine hochaffine Protein-Ligand-Bindung notwendig ist, da vergrabene nicht-abgesättigte HBA und HBD nur selten auftreten. Eine vollständige Absättigung durch entsprechende Proteinpartner wird für ca. 48 % der untersuchten Komplexe beobachtet, ca. 92 % weisen weniger als drei hauptsächlich schwache, nicht-abgesättigte HBA bzw. HBD (z. B. Etherfunktionen) auf. Unter Einbeziehung von Wassermolekülen in die Häufigkeitsanalyse sind sogar für ca. 61 % aller Komplexe alle wasserstoffbrückenbindenden Gruppen abgesättigt. Im Gegensatz zu DSX werden für SFCscore nach Anwendung der empirischen Filterfunktion erhöhte Erfolgsraten für das Auffinden einer kristallnahen Pose (≤ 2.0 Å Abweichung) unter den am besten bewerteten Docking-Posen erzielt. Für die beste SFCscore-Funktion (SFCscore::229m) werden Steigerungen dieses als „Docking Power“ bezeichneten Kriteriums für die Top-3-Posen (Erfolgsrate für die Identifizierung einer kristallnahen 2.0 Å Pose unter den besten drei Docking-Lösungen) von 63.1 % auf 64.2 % beobachtet. In einem weiteren Teilprojekt wurden repulsive Protein-Ligand-Kontakte infolge sterischer Überlappungen der Bindungspartner bei der Bewertung von Docking-Lösungen berücksichtigt. Die adäquate Einbeziehung solcher repulsiver Kontakte im Scoring ist für die Identifizierung proteingebundener Ligandkonformationen entscheidend, jedoch aufgrund fehlender Affinitäts- bzw. Strukturdaten problematisch. Im Rahmen der vorliegenden Arbeit wurde auf der Basis des Lennard-Jones-Potentiales des AMBER-Kraftfeldes zunächst ein neuer Deskriptor zur Beschreibung repulsiver Kontakte („Clash“-Deskriptor) entwickelt und zur Untersuchung der Häufigkeit ungünstiger Protein-Ligand-Kontakte in hochaufgelösten Protein-Ligand-Komplexen des Hartshorn-Datensatzes herangezogen. Eine aus der Häufigkeitsverteilung abgeleitete empirische Filterfunktion („Clash“-Filterfunktion) wurde anschließend der Bewertung von Docking-Lösungen des Cheng-Datensatzes mittels der Scoringfunktionen SFCscore und DSX vorgeschaltet, um unerwünschte Ligandbindeposen auszuschließen. Die Häufigkeitsuntersuchung zeigt, dass vorwiegend schwache repulsive Kontakte in Protein-Ligand-Komplexen auftreten. So werden in 75 % der Komplexe des Hartshorn-Datensatzes abstoßende Potentiale unter 0.462 kcal/mol beobachtet. Zwar betragen die ungünstigen Beiträge pro Komplex für 50 % aller Strukturen ca. 0.8 kcal/mol bis 2.5 kcal/mol, jedoch können diese auf Ungenauigkeiten der Kristallstrukturen zurückzuführen sein bzw. durch günstige Protein-Ligand-Wechselwirkungen kompensiert werden. Die Anwendung der „Clash“-Filterfunktion zeigt signifikante Verbesserungen der Docking Power für SFCscore. Für die beste SFCscore-Funktion (SFCscore::frag) werden Steigerungen der Erfolgsraten für das Auffinden einer kristallnahen Pose unter den drei am besten bewerteten Docking-Lösungen von 61.4 % auf 86.9 % erzielt, was an die Docking Power der bis dato besten Scoringfunktionen aus der Literatur (z. B. DSX, GlideScore::SP) heranreicht (Docking Power (DSX): 92.6 %; Docking Power (GlideScore::SP): 86.9 %). Die „Clash“-Filterfunktion allein ist auch der Kombination der „Clash“- und der „vnaHB“-Filterfunktion überlegen. Ein weiterer Schwerpunkt der vorliegenden Arbeit wurde auf die Einbeziehung von Decoy-Daten (Struktur- und Affinitätsdaten schwach affiner und inaktiver Liganden) im Zuge der Entwicklung computergestützter Methoden zur Bewertung von Docking-Lösungen gelegt. Dadurch soll eine adäquate Berücksichtigung ungünstiger Beiträge zur Bindungsaffinität ermöglicht werden, die für die Richtigkeit und Zuverlässigkeit ermittelter Vorhersagen essentiell ist. In der vorliegenden Arbeit wurden binäre Klassifizierungsmodelle zur Bewertung von Docking-Lösungen entwickelt, die die Einbeziehung von Decoy-Daten ohne die Verfügbarkeit von Affinitätsdaten erlauben. Der Random-Forest-Algorithmus (RF), SFCscore-Deskriptoren, der neu entwickelte „Clash“-Deskriptor, und die Decoy-Datensätze von Cheng und Huang (Trainingsdaten) bilden die Grundlage des leistungsfähigsten Klassifizierungsmodells. Der praktische Nutzen des „besten“ RF-Modells wurde nach Kombination mit der Scoringfunktion DSX anhand der Docking Power für das Auffinden einer kristallnahen Pose auf Rang 1 am unabhängigen Cheng-/Huang- (Komplexe, die nicht in den Trainingsdaten enthalten sind) und CSAR-2012-Testdatensatz untersucht. Gegenüber einer alleinigen Anwendung von DSX werden an beiden Testdatensätzen weitere Verbesserungen der Docking Power erzielt (Cheng-/Huang-Testdatensatz: DSX 84.24 %, RF 87.27 %; CSAR-2012-Testdatensatz: DSX 87.93 %, RF 91.38 %). Das „beste“ Modell zeichnet sich durch die zuverlässige Vorhersage richtig-positiver Docking-Lösungen für einige wenige Komplexe aus, für die DSX keine kristallnahe Ligandkonformation identifizieren kann. Ein visueller Vergleich der jeweils am besten bewerteten RF- und DSX-Pose für diese Komplexe zeigt Vorteile des RF-Modells hinsichtlich der Erkennung für die Protein-Ligand-Bindung essentieller Wechselwirkungen. Die Untersuchung der Bedeutung einzelner SFCscore-Deskriptoren für die Klassifizierung von Docking-Lösungen sowie die Analyse der Misserfolge nach Anwendung des Modells geben wertvolle Hinweise zur weiteren Optimierung der bestehenden Methode. Hinsichtlich der zu bewertenden Eigenschaften ausgeglichenere Trainingsdaten, Weiterentwicklungen bestehender SFCscore-Deskriptoren sowie die Implementierung neuer Deskriptoren zur Beschreibung bis dato nicht-berücksichtigter Beiträge zur Bindungsaffinität stellen Ansatzpunkte zur Verbesserung dar. Der zweite Teil der vorliegenden Arbeit umfasst die Anwendung dockingbasierter Methoden im Rahmen der Entwicklung neuer Inhibitoren des „Macrophage Infectivity Potentiator“-(MIP)-Proteins von Legionella pneumophila und Burkholderia pseudomallei. Das MIP-Protein von Legionella pneumophila stellt einen wichtigen Virulenzfaktor und daher ein attraktives Zielprotein für die Therapie der Legionellose dar. Im Rahmen der vorliegenden Arbeit erfolgten systematische Optimierungen des Pipecolinsäure-Sulfonamides 1, des bis dato besten niedermolekularen MIP-Inhibitors (IC50 (1): 9 ± 0.7 µM). Nach Hot-Spot-Analysen der Bindetasche wurden Docking-Studien zur Auswahl aussichtsreicher Kandidaten für die Synthese und Testung auf MIP-Inhibition durchgeführt. Die Ergebnisse der Hot-Spot-Analysen zeigen günstige Wechselwirkungsbereiche für Donorgruppen und hydrophobe Substituenten in meta-Position sowie Akzeptorgruppen in para-Position des Benzylringes von 1 auf. Die Einführung einer Nitrofunktion in para-Position des Benzylringes von 1 (2h) resultiert in einer erhöhten MIP-Inhibition (IC50 (2h): 5 ± 1.5 µM), was wahrscheinlich auf die Ausbildung einer zusätzlichen Wasserstoffbrücke zu Gly116 zurückzuführen ist. Selektivitätsverbesserungen gegenüber dem strukturverwandten humanen FKBP12-Protein werden insbesondere für das para-Aminoderivat von 1 (2n) erzielt (Selektivitätsindex (1): 45, Selektivitätsindex (2n): 4.2; mit Selektivitätsindex = IC50 (MIP)/IC50 (FKBP12)). Der Ersatz des hydrophoben Trimethoxyphenylrestes von 1 durch einen Pyridinring (2s) führt zu einer verbesserten Löslichkeit bei vergleichbarer MIP-Inhibition. Das MIP-Protein von Burkholderia pseudomallei spielt eine wichtige Rolle in der Pathogenese der Melioidose und stellt daher ein attraktives Zielprotein für die Entwicklung neuer Arzneistoffe dar. In der vorliegenden Arbeit erfolgten Optimierungen des bis dato besten niedermolekularen MIP-Inhibitors 1. Ausgehend von einem Strukturvergleich von Burkholderia pseudomallei MIP mit Legionella pneumophila MIP und einer Hot-Spot-Analyse der Burkholderia pseudomallei MIP-Bindetasche wurden Docking-Studien zur Auswahl aussichtsreicher Kandidaten für die Synthese und Testung auf MIP-Inhibition durchgeführt. Der Strukturvergleich zeigt eine hohe Homologie beider Bindetaschen. Größere konformelle Änderungen werden lediglich für den von Ala94, Gly95, Val97 und Ile98 geformten Bindetaschenbereich beobachtet, was unterschiedliche Optimierungsstrategien für 1 erforderlich macht. Günstige Wechselwirkungsbereiche der Burkholderia pseudomallei MIP-Bindetasche finden sich einerseits für Donorgruppen oder hydrophobe Substituenten in para-Position des Benzylringes (Region A) von 1, andererseits für Akzeptor- bzw. Donorgruppen in para- bzw. meta-/para-Position des Trimethoxyphenylringes (Region B). Anhand von Docking-Studien konnten sowohl für Variationen in Region A als auch in Region B aussichtsreiche Kandidaten identifiziert werden. Initiale MIP-Inhibitionsmessungen der bis dato synthetisierten Derivate deuten auf erhöhte Hemmungen im Vergleich zu 1 hin. Der Ersatz des hydrophoben Trimethoxyphenylrestes von 1 durch einen Pyridinring führt auch hier zu vergleichbarer MIP-Inhibition bei verbesserter Löslichkeit. Derzeit sind weitere Synthesen und Testungen aussichtsreicher Liganden durch die Kooperationspartner geplant. Die Ergebnisse der Inhibitionsmessungen sollen deren Nutzen als MIP-Inhibitoren aufzeigen und wertvolle Informationen für weitere Zyklen des strukturbasierten Wirkstoffdesigns liefern. / Docking-based approaches belong to important virtual screening components and aim at predicting both the ligand position and conformation within the protein binding site as well as the binding affinity. To date scoring functions are still not fully reliable in correctly identifying near-native ligand conformations generated by docking. Thus, the first part of the current work is dedicated to the development of computer-aided methods for the evaluation of docking poses. A first project focused on considering the saturation of hydrogen bond acceptors (HBA) and donors (HBD) for the evaluation of docking poses. Since structural and affinity data are missing, current scoring functions neglect unpaired buried HBA and HBD, which strongly disfavour high-affinity binding. Based on a detailed frequency analysis of unpaired buried HBA and HBD within high-quality protein-ligand complexes of the Hartshorn dataset, an empirical filter function (“vnaHB” filter function) was developed to remove unfavourable ligand binding poses prior to the ranking with scoring functions. The practical benefit of the filter function was investigated for the scoring functions SFCscore and DSX using pre-generated docking poses of the Cheng dataset. As shown in the frequency analysis, the saturation of buried polar groups is of utmost importance for high-affinity binding, as unpaired buried HBA and HBD are extremely rare. A complete saturation by proper protein counterparts is observed for about 48 % of all complexes under study, whereas approximately 92 % have less than three, mostly weak unpaired buried HBA or HBD (e.g. ether functions). Including also the saturation by water molecules reveals that actually for about 61 % of all complexes every hydrogen bonding group is saturated. Unlike DSX, the application of the filter function with SFCscore results in higher success rates for identifying a near-native 2.0 Å pose under the top scored poses, a criterion termed “Docking Power”. For the best SFCscore function (SFCscore::229m) the Docking Power with respect to the top three poses increases from 63.1 % to 64.2 %. A further project focused on considering repulsive intermolecular contacts due to sterical overlap of the protein-ligand binding partners for the evaluation of docking poses. Although an inclusion of such repulsive contacts in scoring is of utmost importance for the identification of protein-bound ligand conformations, it remains challenging because of missing structural and affinity data. Based on the Lennard-Jones potential of the AMBER force field a new descriptor accounting for repulsive protein-ligand contacts (“clash” descriptor) was developed and used for analysing the frequency of unfavourable protein-ligand contacts among high-quality structures of the Hartshorn dataset. An empirical filter function (“clash” filter function) derived from the frequency distribution was applied to pre-generated docking poses of the Cheng dataset to remove unfavourable ligand binding poses prior to the ranking with SFCscore and DSX. As shown in the frequency analysis, mostly weakly repulsive contacts occur within protein-ligand complexes. For 75 % of the complexes of the Hartshorn dataset repulsive potentials of less than 0.462 kcal/mol are observed. Indeed, unfavourable contributions add up to not more than 0.8 kcal/mol to 2.5 kcal/mol per complex for 50 % of all structures; values in this range may be attributed to inaccuracies of crystal structures or could be counterbalanced by favourable protein-ligand interactions. The application of the “clash” filter function shows significant improvements of the Docking Power of SFCscore. For the best SFCscore function (SFCscore::frag) the success rates for identifying a near-native 2.0 Å pose under the three top scored poses increases from 61.4 % to 86.9 %, which is comparable to the Docking Power of the best scoring functions (e.g. DSX, GlideScore::SP) currently available in literature (Docking Power (DSX): 92.6 %; Docking Power (GlideScore::SP): 86.9 %). The “clash” filter function alone is also superior to the combination of the “clash” and the “vnaHB” filter function. Another focus of the work was the inclusion of decoy data (structure and affinity data of weakly active and inactive ligands) in scoring function development. Thus, unfavourable contributions to the binding affinity should be adequately considered, which appears essential for improving accuracy and reliability of the predictions. Within the scope of this work a binary classification model was developed for the evaluation of docking poses, allowing the inclusion of decoy poses without affinity data. The random forest algorithm (RF), SFCscore descriptors, the new “clash” descriptor, and the decoy datasets of Cheng and Huang (training data) provide the basis of the best-performing model. The practical benefit of the “best” RF model was investigated after combination with the scoring function DSX based on the Docking Power for identifying a near-native pose on rank 1 using the independent Cheng/Huang (only complexes not used for training) and the CSAR-2012 dataset. With respect to the standalone application of DSX, improvements of the Docking Power regarding both test sets are achieved (Cheng/Huang test set: DSX 84.24 %, RF 87.27 %; CSAR-2012 test set: DSX 87.93 %, RF 91.38 %). A key feature of the “best” model are reliable predictions of true positive docking poses for those complexes for which DSX fails to identify a near-native ligand conformation. A visual comparison of the best RF and DSX pose highlights advantages of the RF model regarding the recognition of interactions crucial for protein-ligand binding. The importance analysis of SFCscore descriptors for the classification of docking poses as well as the investigation of failures after model application provide useful hints for further improvements. Thus, more property-balanced training data, the further development of established SFCscore descriptors, and the implementation of new descriptors accounting for neglected contributions to the binding affinity constitute possible starting points for future improvements. The second part of this work is dedicated to the application of docking-based methods for the development of new inhibitors of the "`Macrophage Infectivity Potentiator"'-(MIP) proteins of Legionella pneumophila and Burkholderia pseudomallei. The MIP protein of Legionella pneumophila constitutes an important virulence factor and thus an attractive target for the treatment of legionellosis. Within the scope of this work the pipecolic acid sulfonamide 1, one of the best small-molecule MIP inhibitors to date (IC50 (1): 9 ± 0.7 µM), was systematically optimised. After hot spot analysis of the binding pocket, docking studies were conducted to select promising candidates for synthesis and testing MIP inhibition. The results of the hot spot analysis show favourable interaction fields for donor groups and hydrophobic substituents in meta position as well as acceptor groups in para position of the benzyl ring of 1. Introducing a nitro function in para position of the benzyl ring of 1 (2h) results in an increased MIP inhibition (IC50 (2h): 5 ± 1.5 µM), which is likely due to the formation of an additional hydrogen bond to Gly116. An improvement in the selectivity compared to the structurally related human FKBP12 protein is achieved particularly with the para amino derivative of 1 (2n) (selectivity index (1): 45, selectivity index (2n): 4.2, where the selectivity index = IC50 (MIP)/IC50 (FKBP12)). Replacing the hydrophobic trimethoxyphenyl residue of 1 with a pyridine ring (2s) leads to improved solubility and comparable MIP inhibition. The MIP protein of Burkholderia pseudomallei plays an important role in the pathogenesis of melioidosis and thus constitutes an attractive target for the development of new drugs against this disease. Within the scope of this work the currently best small-molecule MIP inhibitor 1 was optimised. Starting with a structural comparison of Burkholderia pseudomallei MIP and Legionella pneumophila MIP, as well as a hot spot analysis of the Burkholderia pseudomallei MIP binding pocket, docking studies were conducted to select promising candidates for synthesis and testing for MIP inhibition. The structural comparison reveals a high homology of the two binding pockets. Major conformational changes are observed for the binding pocket region formed by Ala94, Gly95, Val97 and Ile98, which necessitates different optimisation strategies for 1. Favourable interaction fields for the Burkholderia pseudomallei MIP binding pocket are found for donor groups or hydrophobic substituents in para position of the benzyl ring (region A) of 1 as well as for acceptor or donor groups in para or meta/para position of the trimethoxyphenyl ring (region B). On the basis of the docking studies promising candidates could be identified for variations in both regions. Initial MIP inhibition measurements of synthesised derivatives indicate increased inhibition compared to 1. Replacing the hydrophobic trimethoxyphenyl residue of 1 with a pyridine ring (yielding a more soluble derivative) leads again to comparable MIP inhibition. Further syntheses and tests of promising ligands are currently being planned by the collaboration partners. The results of the inhibition measurements should demonstrate their suitability as MIP inhibitors and provide useful information for future structure-based drug design cycles.
26

Neue Inhibitoren zellmembranständiger Proteinkinasen

Bracht, Kathrin. January 2007 (has links)
Konstanz, Univ., Diss., 2007.
27

Virtuelles Screening und Entwicklung selektiver Liganden des Aurora-A – MYCN Komplexes und computergestützte Methoden zur Analyse und Design von PROTACs / Virtual screening and development of selective ligands for the Aurora-A - MYCN complex and computational methods for analysis and design of PROTACs

Diebold, Mathias January 2023 (has links) (PDF)
Die Interaktion des onkogenen Transkriptionsfaktors MYCN mit der Ser/Thr Kinase Aurora-A verhindert dessen Abbau über das Ubiquitin Proteasomsystem indem die Rekrutierung des SCF FbxW7 Komplexes verhindert wird. Die Kinase nimmt mit der Bindung an MYCN eine aktive Konformation ein und erhält somit die Fähigkeit zur Kinaseaktivität ohne die sonst notwendige Phosphorylierung von Thr288 oder die Anwesenheit eines Aktivators wie TPX2. Da hohe MYCN Konzentrationen Tumore wie Neuroblastome antreiben, ist die Störung der Komplexbildung mit Aurora-A eine valide Strategie zur Entwicklung von Chemotherapeutika. Einige Inhibitoren von Aurora-A wie Alisertib (MLN8237) sind in der Lage, eine Konformationsänderung in der Kinase zu verursachen, die mit der Bindung von MYCN inkompatibel ist und auf diese Weise den Abbau des Transkriptionsfaktors induziert. Da Aurora-A wichtige Funktionen in der Mitose übernimmt, könnte eine direkte Adressierung des Komplexes anstelle einer systemischen Inhibition der Kinase vielversprechender sein. Ziel des Projektes war die Identifizierung von Molekülen, die selektiv an das Interface des Aurora-A – MYCN Komplexes binden und weiter optimiert werden können, um einen gezielten Abbau des Transkriptionsfaktors über einen PROTAC Ansatz zu ermöglichen. Virtuelle Screenings und molekulardynamische Simulationen wurden durchgeführt, um kommerziell erhältliche Verbindungen zu identifizieren, welche mit einer Bindetasche des Komplexes interagieren, die nur zustande kommt, wenn beide Proteine miteinander interagieren. Aus einem ersten Set von zehn potentiellen Liganden wurde für vier eine selektive Interaktion mit dem Protein – Protein Komplex gegenüber Aurora-A oder MYCN alleine in STD-NMR Experimenten bestätigt. Zwei der Hits besaßen ein identisches Grundgerüst und wurden als Ausganspunkt für die Optimierung zu potenteren Liganden genutzt. Das Gerüst wurde fragmentweise vergrößert und in Richtung besserer in-silico Ergebnisse und Funktionalisierung zur Anbringung von E3-Ligase-Liganden optimiert. Neun dieser Liganden der zweiten Generation wurden synthetisiert. Um quantitative Bindungsdaten zu erhalten, wurde ein kovalent verknüpftes Aurora-A – MYCN Konstrukt entworfen. Die strukturelle und funktionale Integrität wurde in STD-NMR und BLI Experimenten mit bekannten Aurora-A Inhibitoren bestätigt, sowie in NMR-basierten ATPase Assays. Zusätzlich konnte die Kristallstruktur des Konstrukts gelöst und damit die Validität des Designs bestätigt werden. Quantitative Messungen der synthetisierten Moleküle identifizierten HD19S als Hit mit einer zehnfach höheren Affinität für das Aurora-A – MYCN Konstrukt im Vergleich zu der Kinase allein. Zusätzlich wurden in-silico Untersuchungen zu PROTACs der Aurora-A Kinase durchgeführt. Interaktionen zwischen Aurora-A, der E3-Ligase Cereblon und den Liganden wurden modelliert und für die Erklärung unterschiedlicher Aktivitäten der eingesetzten PROTACs verwendet. Zudem zeigte das aktivste PROTAC eine hohe Selektivität für Aurora-A gegenüber Aurora-B, obwohl die verwendete Erkennungseinheit (Alisertib) an beide Aurora-Proteine bindet. Dieser Umstand konnte durch energetische Analysen von molekulardynamischen Simulationen der ternären Komplexe erklärt werden. Optimierungsmöglichkeiten für eine effizientere Degradation von Aurora-A durch die PROTACs wurden basierend auf modifizierten Erkennungseinheiten und verbesserten Linkern untersucht. / The association of the oncogenic transcription factor MYCN with the Ser/Thr kinase Aurora-A prevents its degradation via the ubiquitin proteasome system by preventing the SCF FbxW7 complex from binding. The kinase adopts an active conformation when bound to MYCN, enabling kinase activity without prior phosphorylation on Thr288 or the presence of an activator like TPX2, and therefore at inappropriate times during the cell cycle. As high levels of MYCN have been shown to drive cancers like neuroblastoma, disrupting the complex formation is thought to be a viable development strategy for chemotherapeutics. Several small-molecule inhibitors of Aurora-A, like Alisertib (MLN8237), are able to induce a conformational change in the kinase, preventing the formation of the protein – protein complex and therefore promoting MYCN degradation. However, since Aurora-A has important roles during mitosis targeting only the complex could be a more promising approach than the systemic inhibition of the kinase. This project aimed to identify small molecules which selectively bind at the Aurora-A – MYCN interface and can be further optimized to induce targeted degradation via a PROTAC approach. Virtual screenings and molecular dynamics simulations were performed to identify commercially available compounds which should bind to a pocket formed only when the two proteins come together. Of a first set of ten potential binders, four showed binding to the Aurora-A – MYCN complex but not the individual proteins in STD-NMR experiments. Two of these hit molecules contained the same scaffold and were used as a starting point for optimization towards more potent ligands. In a fragment-based fashion, the scaffold was grown to achieve better affinity in-silico and provide linkage points for functionalization such as the attachment of E3 ligase ligands to create PROTACs. Nine of these second-generation compounds were then synthesized. In order to obtain quantitative binding data a covalently linked Aurora-A – MYCN construct was designed. Its structural and functional validity was shown in STD-NMR and BLI experiments with known Aurora-A inhibitors and in NMR-based ATPase assays. In addition, a crystal structure of the construct was solved, validating the designed structure. Quantitative measurements with the synthesized compounds revealed a positive hit (HD19S) with a ten-fold higher affinity to the covalently linked AuroraA – MYCN as compared to Aurora-A alone. Additionally, effects of PROTACs designed to degrade Aurora-A were studied in-silico. Interactions between Aurora-A, the E3-ligase Cereblon and small molecules were modelled and successfully used to explain the differences in activities observed with different PROTACs. The most active PROTAC also showed a high selectivity for Aurora-A over Aurora-B, even though the recognition unit (Alisertib) can bind both family members. Through energetic analysis of molecular dynamics simulations of the ternary complexes, these differences could be explained. Optimizations for a more efficient degradation of Aurora-A by the PROTACs were examined by changing the recognition unit and improving linkers.
28

Design, Synthese und biologische Testung von KasA-Inhibitoren als potentielle Wirkstoffe gegen Mycobacterium tuberculosis / Design, synthesis and biological testing of KasA-inhibitors as potential drugs against mycobacterium tuberculosis

Topf, Christine January 2013 (has links) (PDF)
Im Mittelpunkt dieser Arbeit stand die Entwicklung neuer Wirkstoffe gegen Tuberkulose, einer schwerwiegenden bakteriellen Infektionskrankheit, die am häufigsten die Lunge befällt. Die Entwicklung neuer Arzneistoffe gegen diese Erkrankung ist immens wichtig, da nach Angaben der WHO weltweit jährlich über 1 Million Menschen an den Folgen der Tuberkulose sterben, derzeit kein effizienter Impfstoff zur Verfügung steht und sich die Therapiemöglichkeiten auf wenige Arzneistoffe beschränken. Zudem steigt weltweit das Auftreten von arzneistoff- und totalresistenten Tuberkuloseformen. Tuberkulose wird vorwiegend durch das Mycobacterium tuberculosis erregt. Eine Besonderheit des M. tuberculosis stellt die mykobakterielle Zellwand dar, da diese durch einen hohen Anteil an Fettsäuren besonders wachsartig und dick ist. Die mykobakterielle Fettsäuresynthese unterscheidet sich signifikant von der Synthese eukaryotischer Fettsäuren. Daher besteht die Möglichkeit, Inhibitoren der mykobakteriellen Fettsäuresynthese als effektive und selektive neue Antituberkulotika zu entwickeln. Zielstruktur dieser Arbeit ist KasA (β-Ketoacylsynthase), ein Enzym der mykobakteriellen Fettsäuresynthese II, das die Kondensation zwischen der wachsenden Fettsäurekette und Malonyl-ACP katalysiert. Ein literaturbekannter KasA-Inhibitor ist Thiolactomycin, ein Thiolacton-Derivat mit einer schwachen inhibitorischen Aktivität (IC50: 242 µM; Kd 226 µM), für den eine KasA-Komplexstruktur verfügbar ist. Ziel der Arbeit war es, mittels computergestützten Wirkstoffdesigns neue Leitstrukturen für KasA-Inhibitoren zu entwickeln und davon abgeleitet Substanzbibliotheken kleiner Moleküle zu synthetisieren. Zur Bestimmung der In-vitro-Aktivitäten sollte KasA exprimiert und ein Assay etabliert werden. Theoretische und experimentelle Affinitäten sollten anschließend analysiert und bewertet werden. Zur Identifizierung neuer potenzieller KasA-Inhibitoren wurde mit Hilfe des Thiolactomycin-Bindemodus ein Pharmakophor-Modell erstellt. In diesem wurden die essentielle Wasserstoffbrücke zwischen den Histidinen und dem Carbonyl-Sauerstoff des Thiolactonrings, zwei hydrophobe Bereiche und ein verbindendes Strukturelement definiert und das Volumen des Pharmakophors begrenzt. Das Screening der Datenbank erfolgte mit GOLD4.0 und GOLDscore. Zur Identifizierung der 16 aussichtsreichsten Verbindungen wurden Rescorings mit ChemScore und sfc_score290m durchgeführt, sowie verschiedene physikochemische Deskriptoren und der errechnete Bindungsmodus einbezogen. Ausgewählte Verbindungen des Screenings wurden synthetisiert. Weitere Variationen wurden durch Einführung von Substituenten und Bromierung und Nitrierung der Grundgerüste erhalten. Zur biologischen Testung dieser Verbindungen konnte KasA in M. smegmatis exprimiert werden. Die Reinigung des Proteins erfolgte mittels Affinitäts- und Größenausschlusschromatographie. Affinitätswerte an KasA konnten mit einem Fluoreszenzassays bestimmt werden, da in jedem KasA-Monomer vier Tryptophane zur intrinsischen Fluoreszenz beitragen. Die Bindung eines Inhibitors in die TLM-Bindetasche führte zum Quenching der Fluoreszenz von KasA und konnte unter Berücksichtigung von Verdünnungs- und inneren Filtereffekten zur Berechnung der Dissoziationskonstante Kd herangezogen werden. Die In-vitro-Untersuchungen der Inhibitoren von KasA zeigten im Vergleich zu TLM eine Verbesserung der Affinität bis zu einem Faktor von 11, die beste Verbindung war das Nitroisatin-Derivat 2l (22.1 µM). Einen Hinweis auf Hemmung des Wachstums von Mykobakterien war für die Verbindungen 2e (5-Nitro-1-phenethyl-2,3-indolindion) und 3a (5,7-Dibrom-1-(4-chlorbenzyl)indolin-2,3-dion) ersichtlich. Die übrigen Verbindungen zeigten keine Aktivität, was dadurch bedingt sein kann, dass sie Substanzen nicht lipophil genug sind (clogP-Werte zwischen 1 und 3), um die mykobakterielle Zellwand zu durchdringen. Analog dem Docking im Rahmen des virtuellen Screenings wurde ein Docking mit GOLD4.0 und GOLDscore für die Substanzbibliothek durchgeführt. Verglichen mit den In-vitro-Affinitäten konnte eine gute Übereinstimmung in der Differenzierung der Substanzklassen gefunden werden. Da kleine Moleküle mit großer biologischer Aktivität zu bevorzugen sind, wurde die „ligand efficiency“, die inhibitorische Potenz unabhängig vom Molekulargewicht, für die Verbindungen berechnet. Für die Substanzbibliothek wurde eine gute Korrelation von „ligand efficiency“ und GOLDscore pro Schweratom erzielt (R2=0.65), beste Substanzgruppen waren monoalkylierte Uracil- und Isatin-Derivate. Der beste Wert wurde für das Isatin-Derivat 1a erzielt. Mit den erarbeiteten theoretischen und experimentellen Ergebnissen und den etablierten Methoden bietet diese Arbeit eine wichtige Grundlage, um erste „hits“ von KasA-Inhibitoren zu neuen Leitstrukturen für Wirkstoffe gegen Mycobakterium tuberculosis zu entwickeln. / This work focused on the development of new antibiotics against tuberculosis, a severe bacterial infection mainly affecting the lung. Currently, according to the WHO more than 1 million people annually die from tuberculosis. Furthermore, the therapy is limited to inefficient vaccines and a small number of antibiotics, and complicated by multi- or even totally resistant mycobacterial strains occurring worldwide. Thus, new active compounds against tuberculosis are urgently needed. Tuberculosis is mainly caused by Mycobacterium tuberculosis, which is characterized by a unique thick and waxy cell wall containing a high percentage of mycolic acids. Due to the fact that the biosynthesis of mycolic acids is not carried out in eukaryotes, it is a reasonable strategy to design inhibitors of the FAS II system as effective and selective antibiotics against mycobacteria. The enzyme of interest in our work is the β-keto-acyl ACP synthase (KasA), an elongating enzyme in the FAS II system of Mycobacterium tuberculosis which catalyses the condensation between the mycolic acid and malonyl-ACP. Recently, a crystal structure of KasA in complex with Thiolactomycin, a weak thiolactone-type inhibitor (IC50: 242 µM; Kd 226 µM), was solved. Aim of this work was to identify new potential lead structures for KasA-inhibitors by virtual screening. A library of small molecules was synthesized and tested for ability to inhibit KasA, therefore KasA was expressed. In silico and in vitro affinities were analyzed and compared. To identify new lead structures for potential KasA inhibitors, a pharmacophore model based on TLM was developed. This contained the essential H-bond between the carbonyl-oxygen of TLM with the histidines, two hydrophobic features and a linker feature between them. Additionally, volume constraints were applied to limit the size of molecules matching the pharmacophore model. Screening of a database of commercially available compounds was performed with GOLD4.0 and GOLDscore. 16 Promising structures were identified by implementation of rescorings with ChemScore and sfc_score290m, by calculation of physicochemical descriptors and by visual inspection of the predicted binding mode. Selected substances of the virtual screening were synthesized. Based on these substances the core fragments were varied by bromination and nitration. Via subsequent introduction of substituents a small library of compounds was created. For biological testings KasA was expressed in M. smegmatis. Purification of the protein was achieved by affinity and size exclusion chromatography. Dissociation constants were determined by a fluorescence assay: In each KasA monomer four tryptophanes cause intrinsic fluorescence, thus binding of inhibitors led to quenching of the fluorescence. Therefore, dissociation constants of ligands were calculated considering the dilution and inner filter effects. The in vitro studies of the KasA inhibitors showed, in comparison to TLM, a 11fold improvement of the affinity. The best inhibitor was the nitroisatine derivative 2l (22.1 µM). 2e (5-Nitro-1-phenethyl-2,3-indolindione) and 3a (5,7-Dibromo-1-(4-chlorbenzyl)indolin-2,3-dione) were able to inhibit the growth of mycobacteria. No other substances showed any antimycobacterial activity, which might be due to their low lipophilicity (clogP varies from 1 to 3), hence which hinders an efficient penetration through the highly lipophilic mycobacterial cell wall. In the future, the precise cause of this fact has to be determined to counteract with systematic structural modifications. The compound library was docked into KasA by using GOLD4.0 and GOLDscore with analogous settings as in the virtual screening. The analysis of the results showed an agreement between in vitro and in silico outcomes for the substance classes. As small molecules of high activity are preferred in drug development, ligand efficiencies of the inhibitors were calculated which describe inhibitory potency independent of molecular weight. A good correlation between ligand efficiency and GOLDscore per heavy atom was observed. Best ligand efficiencies were obtained by the classes of monoalkylated uracile- and isatine-derivatives, the best substance was the isatine-derivative 1a. Due to the established methods combined with computer-based and experimental results, this work provides an important foundation for the future development of first “hits” of KasA-inhibitors to new lead structures of new drugs against mycobacterium tuberculosis.
29

Synthesis and biological testing of potential anti-tuberculosis drugs targeting the β-ketoacyl ACP synthase / Synthese und biologische Untersuchung von β-ketoacyl-ACP-Synthase-Inhibitoren als potentielle Antituberkulotika

Kesetovic, Diana January 2016 (has links) (PDF)
With 9.6 million new cases and 1.5 million deaths in 2014, tuberculosis (TB) is alongside with AIDS the most deadly infection.‎ Foremost, the increased prevalence of resistant strains of M. tuberculosis among the TB-infected population represents a serious thread. Hence, in the last decades, novel drug targets have been investigated worldwide. So far a relatively unexplored target is the cell wall enzyme β-ketoacyl-ACP-synthase “KasA”, which plays a crucial role in maintaining the membrane impermeability and hence the cell ability to resist to the immune response and drug therapy. KasA is a key enzyme in the fatty acid synthase “FAS-II” elongation cycle, responsible for the extension of the growing acyl chain within the biosynthesis of precursors for the most hydrophobic constituents of the cell wall – mycolic acids. Design of the novel KasA inhibitors, performed in the research group of Prof. Sotriffer by C. Topf and B. Schaefer, was based on the recently published crystal structure of KasA‎ in complex with its known inhibitor thiolactomycin (TLM). Considering the essential ligand-enzyme interactions, a pharmacophore model was built and applied in the virtual screening of a modified ZINC database. Selected hits with the best in silico affinity data have been reported by Topf‎ and Schaefer‎. In this work, two of the obtained hits were synthesized and their structure was systematically varied. First, a virtual screening hit, chromone-2-carboxamide derivative GS-71, was modified in the amide part. Since the most of the products possessed a very low solubility in the aqueous buffer medium used in biological assays, polar groups (nitro, succinamidyl and trimethyl-amino substituent in position 6 of the chromone ring or hydroxyl group on the benzene ring in the amide part have been inserted to the molecule. Further variations yielded diaryl ketones, diaryl ketone bearing a succinamidyl substituent, carboxamide bearing a methylpiperazinyl-4-oxobutanamido group and methyl-malonyl ester amides. Basically, the essential structural features necessary for the ligand-enzyme interactions have been maintained. The latter virtual screening hit, a pyrimidinone derivative VS-8‎ was synthesized and the structure was modified by substitution in positions 2, 4, 5 and 6 of the pyrimidine ring. Due to autofluorescence, detected in most of the products, this model structure was not further varied. Simultaneously, experiments on solubilization of the first chromone-2-carboxamides with cyclodextrins, cyclic oligosacharides known to form water-soluble inclusion complexes, were performed. Although the assessed solubility of the chromone 3b/DIMEB (1:3) mixture exceeded 14-fold the intrinsic one, the achieved 100 µM solubility was still not sufficient to be used as a stock solution in the binding assay. The experiments with cyclodextrin in combination with DMSO were ineffective. Owing to high material costs necessary for the appropriate cyclodextrin amounts, the aim focused on structural modification of the hydrophobic products. Precise structural data have been obtained from the solved crystal structures of three chromone derivatives: the screening hit GS-71 (3b), its trimethylammonium salt (18) and 6-nitro-substituted N-benzyl-N-methyl-chromone-2-carboxamide (9i). The first two compounds are nearly planar with an anti-/trans-rotamer configuration. In the latter structure, the carboxamide bridge is bent out of the chromone plane, showing an anti-rotamer, too. Considering the relatively low partition coefficient of compound 3b (cLogP = 2.32), the compound planarity and correlating tight molecular packing might be the factors significantly affecting its poor solubility. Regarding the biological results of the chromone-based compounds, similar structure-activity correlations could be drawn from the binding assay and the whole cell activity testing on M. tuberculosis. In both cases, the introduction of a nitro group to position 6 of the chromone ring and the presence of a flexible substituent in the amide part showed a positive effect. In the binding study, the nitro group at position 4 on the N-benzyl residue was of advantage, too. The highest enzyme affinity was observed for N-(4-nitrobenzyl)-chromone-2-carboxamide 4c (KD = 34 µM), 6-nitro substituted N-benzyl-chromone-2-carboxamide 9g (KD = 40 µM) and 6‑nitro-substituted N-(4-nitrobenzyl)-chromone-2-carboxamide 9j (KD = 31 µM), which could not be attributed to the fluorescence quenching potential of the nitro group. The assay interference potential of chromones, due to a covalent binding on the enzyme sulfhydryl groups, was found to be negligible at the assay conditions. Moderate in vivo activity was detected for 6‑nitro-substituted N-benzyl-chromone-2-carboxamide 9g and its N-benzyl-N-methyl-, N‑furylmethyl-, N-cyclohexyl- and N-cyclohexylmethyl derivatives 9i, 9d, 9e, 9f, for which MIC values 20 – 40 µM were assessed. Cytotoxicity was increased in the N‑cyclohexylmethyl derivative only. None of the pyrimidine-based compounds showed activity in vivo. The affinity of the model structure, VS-8, surpassed with KD = 97 µM the assessed affinity of TLM (KD = 142 µM). Since for the model chromone compound GS-71 no reliable KasA binding data could be obtained, a newly synthesized chromone derivative 9i was docked into the KasA binding site, in order to derive correlation between the in silico and in vitro assessed affinity. For the 6‑nitro-derivative 9i a moderate in vivo activity on M. tuberculosis was obtained. The in silico predicted pKi values for TLM and 9i were higher than the corresponding in vitro results, maintaining though a similar tendency, i.e., the both affinity values for compound 9i (pKi predicted = 6.64, pKD experimental = 4.02) surpassed those obtained for TLM (pKi predicted = 5.27, pKD experimental = 3.84). Nevertheless, the experimental pKD values are considered preliminary results. The binding assay method has been improved in order to acquire more accurate data. Owing to the method development, limited enzyme batches and solubility issues, only selected compounds could be evaluated. The best hits, together with the compounds active on the whole cells of M. tuberculosis, will be submitted to the kinetic enzyme assay, in order to confirm the TLM-like binding mechanism. Regarding the in vivo testing results, no correlations could be drawn between the predicted membrane permeability values and the experimental data, as for the most active compounds 9e and 9f, a very low permeability was anticipated (0.4 and 0.7 %, respectively). Further biological tests would be required to investigate the action- or transport mode. / Mit 9.6 Millionen Neuerkrankungen und 1.5 Millionen Todesfällen im Jahr 2014 ist Tuberkulose (TB) neben AIDS die häufigste Todesursache unter Infektionskrankheiten.‎ Insbesondere die zunehmende Verbreitung resistenter Stämme von M. tuberculosis stellt eine ernste Gefahr dar. In den letzten Jahrzehnten wurde daher weltweit nach neuen möglichen Wirkstoff-Zielen gesucht. Bisher noch relativ unerforschtes Ziel ist das Zellwand-Enzym β Ketoacyl-ACP-Synthase "KasA", das eine entscheidende Rolle bei der Aufrechterhaltung der Membran-Dichtigkeit spielt, und somit den Zellen ermöglicht, gegen den Immunabwehr und Arzneimitteltherapie Resistenz zu zeigen. KasA ist ein Schlüsselenzym in der Fettsäure-Synthase-(FAS-II)-Elongationsrunde, die für die Erweiterung der wachsenden Acylkette während der Biosynthese der Vorstufen der hydrophobesten Zellwand-Bestandteilen – der Mykolsäuren, verantwortlich ist. Das Design der neuen KasA-Hemmer, das im Arbeitskreis von Prof. Sotriffer von C. Topf und B. Schäfer durchgeführt wurde, basiert auf der kürzlich veröffentlichten Kristallstruktur von KasA im Komplex mit seinem bekannten Inhibitor Thiolactomycin (TLM)‎. In Anbetracht der essentiellen Ligand-Enzym-Wechselwirkungen wurde ein Pharmakophor-Modell erstellt und im virtuellen Screening einer modifizierten ZINC-Datenbank angewendet. Die ausgewählten “Hits“ mit den besten In-silico-Affinitätsdaten wurden in den Doktorarbeiten von Topf‎ und Schaefer‎ veröffentlicht. In Rahmen dieser Arbeit wurden zwei der erhaltenen “Hits“ synthetisiert und ihre Struktur systematisch variiert. Erste Modellstruktur, das Chromon-2-Carboxamid-Derivat GS-71‎. wurde zunächst in dem Amid-Rest modifiziert. Da die meisten Produkte (3a-p, 4a-k) eine sehr geringe Löslichkeit im wässrigen Puffermedium aufwiesen, wurden polare Gruppen in das Molekül eingefügt (Nitro, Succinamidyl- und Trimethyl-Amino-Substituenten in der 6 Stellung des Chromon-Rings, oder eine Hydroxyl-Gruppe am Benzolring im Amid-Teil. Weitere Variationen ergaben Diarylketone, ein Diarylketon mit der Succinamidyl Kette, ein Carboxamid mit dem Methylpiperazinyl-4-oxobutanamido-Substituenten und Methyl-Malonyl-Ester-Amide. Grundsätzlich wurden alle Strukturmerkmale notwendig für die Ligand-Enzym-Wechselwirkungen beibehalten. Die letztere Modellstruktur aus dem virtuellen Screening, das Pyrimidinon Derivat VS-8‎ wurde synthetisiert, und die Struktur wurde durch Substitution in den Positionen 2, 4, 5 und 6 des Pyrimidin-Rings modifiziert. Wegen Eigenfluoreszenz, detektiert in den meisten Produkten, wurde diese Modellstruktur nicht weiter variiert. Gleichzeitig wurden Experimente zur Solubilisierung der ersten Chromon-2-Carbonsäureamide mit Cyclodextrinen, cyclischen Oligosacchariden, die bekanntlich wasserlösliche Einschlusskomplexe bilden, durchgeführt. Obwohl die gemessene Löslichkeit des 3b/DIMEB (1:3)-Gemisches die intrinsische Löslichkeit um das 14-fache überschritt, war die erzielte Löslichkeit von 100 µM noch nicht ausreichend, um diese Lösung als Stammlösung im Assay zu verwenden. Die Experimente mit Cyclodextrin in Kombination mit DMSO waren unproduktiv. Aufgrund der hohen Materialkosten für die benötigten Cyclodextrinmengen wurden die Löslichkeit-Tests an dieser Stelle abgebrochen und eine strukturelle Modifizierung der hydrophoben Produkte stand in Vordergrund des Interesses. Genaue Strukturdaten wurden aus den aufgeklärten Kristallstrukturen von drei Chromon-Derivaten, der Modellstruktur GS-71 (3b), seiner Trimethylammoniumsalz (18) und dem 6‑Nitro-substituierten N-Benzyl-N-methyl-Chromon-2-Carboxamid (9i), erhalten. Die ersten beiden Verbindungen sind mit einer anti-/trans-Rotamer Konfiguration fast planar. Die Carbonsäureamid-Brücke der letzteren Struktur, die ebenso ein anti-Rotamer darstellt, wird aus der Chromon Ebene gebogen. Angesichts des relativ geringen Verteilungskoeffizientes der Verbindung 3b (clogP = 2.32), die Ebenheit des Moleküls und das damit verbundene enge Molekülpackung könnten die wesentlich schlechtere Löslichkeit begründen. In Bezug auf die biologischen Ergebnisse der Chromon-basierten Verbindungen, ähnliche Struktur-Aktivitäts-Beziehungen können aus dem Bindungs-Assay, sowie aus dem Ganzzellaktivitätstests auf M. tuberculosis gezogen werden. In beiden Fällen zeigte die Einführung einer Nitrogruppe in die Position 6 des Chromon-Rings und das Vorhandensein eines flexiblen Substituents im Amidrest einen positiven Effekt. In dem Bindungs-Assay war die Nitrogruppe in Position 4 des N-Benzyl-Rests ebenso vorteilhaft. Die höchste Enzymaffinität wurde im Falle des N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 4c (KD = 34 µM), des substituierten 6-nitro-N-Benzyl-Chromon-2-Carboxamid 9g (KD = 40 µM) und des 6-Nitro-substituierten N-(4-Nitrobenzyl)-Chromon-2-Carboxamid 9j (KD = 31 µM), beobachtet, allerdings konnte sie nicht dem Fluoreszenzlöschungspotenzial der Nitrogruppe zugeschrieben werden. Das Assay-Störpotential der Chromonverbindungen aufgrund einer kovalenten Bindung an die Sulfhydryl-Gruppen des Enzyms zeigte sich in den Assay-Bedingungen als vernachlässigbar. Moderate in vivo-Aktivitäten wurden für den 6-nitro substituierten N‑Benzyl-Chromon-2-Carboxamid 9g und dessen N-Benzyl-N-Methyl- (9i), N‑Furfurylmethyl-(9d), N-Cyclohexyl- (9e) und N-Cyclohexylmethyl- (9f) Derivate, für denen die MIC-Werte zwischen 20 und 40 µM erhalten wurden (siehe Tab. 17). Die Zytotoxizität wurde erhöht nur im Falle des N-Cyclohexylmethyl Derivates. Keine der Pyrimidin-basierten Verbindungen wies eine Aktivität in vivo auf. Die KasA-Affinität der Modellstruktur VS-8 übertraf mit KD = 97 µM die gemessene Affinität von TLM (KD = 142 µM). Da für die Modell Chromon-Verbindung GS-71 keine zuverlässigen KasA Bindungsdaten erhalten werden konnten, ein neu-synthetisierte Chromon-Derivat 9i wurde in die KasA Bindungsstelle gedockt, um die Korrelation zwischen den In-silico- und In-vitro-Affinitätswerten abzuleiten. Für den 6-Nitroderivat 9i wurde eine mäßige Aktivität in vivo auf M. tuberculosis bestimmt. Die in silico-vorhergesagten pKi-Werte für TLM und 9i waren allgemein höher als die entsprechenden experimentellen Ergebnisse. Sie bewiesen allerdings eine ähnliche Tendenz, d.h. die beiden Affinitätswerte für die Verbindung 9i (pKi vorhergesagt = 6.64, pKD experimentell = 4.02) übertrafen die Werte von TLM (pKi vorhergesagt = 5.27, pKD experimentell = 3.84). Dennoch sind die experimentellen Affinitätsdaten nur als vorläufige Resultate zu betrachten, solange die Bindungsweise mittels des kinetischen Enzymassays verifiziert wird. Die Assay-Methode wurde verbessert, um zuverlässigere Daten zu erhalten. Aufgrund der Verfahrensentwicklung, den limitierten Enzymchargen und Löslichkeitsprobleme konnten nur ausgewählte Verbindungen bewertet werden. Die besten “Hits“, zusammen mit den Verbindungen, die auf den ganzen Zellen von M. tuberculosis aktiv waren, werden dem kinetischen Enzymtest vorgelegt. In Bezug auf die In-vivo-Testergebnisse, es konnten keine Korrelationen zwischen den vorhergesagten Membranpermeabilität-Werten und den experimentellen Daten gezogen werden, da bei den wirksamsten Verbindungen 9e und 9f nur eine sehr geringe Permeabilität erwartet wurde (zu 0.4 und 0.7 %). Weitere biologische Tests wären erforderlich, um das Wirkungsmechanismus oder die Transportweise zu untersuchen.
30

Development and application of fast fuzzy pharmacophore-based virtual screening methods for scaffold hopping

Renner, Steffen. Unknown Date (has links)
University, Diss., 2006--Frankfurt (Main). / Zsfassung in engl. und dt. Sprache.

Page generated in 0.0525 seconds