• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • Tagged with
  • 19
  • 19
  • 15
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Regulation and Functional Impact of Opioid Receptor Splicing in Response to Morphine

Regan, Patrick M. January 2015 (has links)
Multiple classes of pharmaceuticals, including acetaminophen, aspirin, and other nonsteroidal anti-inflammatory drugs (NSAIDs), are used to relieve mild to moderate pain; however, one of the oldest classes of pharmaceuticals, opioids, remains the primary class of drugs used in the management of severe pain. For decades, the unique pharmacological profiles of opioid compounds have suggested the existence of multiple opioid receptor subtypes and, accordingly, four opioid receptors have been cloned to date; the mu (μ)-opioid receptor, the kappa (κ)-opioid receptor, the delta (δ)-opioid receptor, and the nociceptin/orphanin FQ receptor. Additionally, each receptor is encoded by its own distinct gene; the OPRM1, OPRK1, OPRD1, and OPRL1, respectively. Despite the identification and characterization of these four opioid receptor subtypes, pharmacological data, particularly from opioid receptor knockout mice, does not conform to the predications of a four opioid receptor model and instead suggests the existence of additional receptor subtypes. Additional opioid receptors have since been proposed but corresponding genes have either been unidentified or found to be genetically unrelated. Interestingly, this problem is not unique to opioid receptors, as there is a large discrepancy between the number of protein encoding genes and the repertoire of mRNA transcripts and encoded proteins they produce, with gene products far more numerous than estimates would predict. It is now understood that this discrepancy is due to the generation of multiple RNA transcripts from a single gene. Several mechanisms are utilized in order to generate mRNA transcript variants, or isoforms, from a single gene; however, the primary mechanism, known as alternative splicing, involves a complex macromolecular machine, referred to as the spliceosome, through which specific portions of the precursor mRNA (pre-mRNA) sequence are selectively removed and the remaining nucleotide sequences are ligated to form a unique mRNA transcript. Recently, multiple opioid receptor isoforms, particularly for the μ-opioid receptor, have been identified; however, both their regulation and their functional significance are poorly characterized. As such, multiple studies are needed to more precisely describe alternatively spliced μ-opioid receptor isoforms, particularly the regulation of spliceosome components that determine the splicing specificity of particular isoforms as well as the distinct signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Using a model of dopaminergic neurons, this study sought to examine these questions and found that expression of a particular splice variant, MOR-1X, was up-regulated by morphine through a mechanism involving the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 found that the unique distal portion of C-terminal domain contains two additional PKA phosphorylation sites as well as a second agonist-induced phosphorylation motif highly conserved among opioid receptors. Functional comparison of MOR-1 and MOR-1X found distinct signaling differences, both constitutively and following morphine treatment, in MAPK signaling cascades, particularly ERK1/2. While the pharmacological significance of MOR-1X expression and signaling remains unclear, the clinical importance of this finding extends beyond a mechanism of opioid analgesic variability, as the physiological roles of opioids also include immunomodulation and have been implicated specifically in the exacerbation of HIV viral replication and pathology, particularly neurocognitive dysfunction. Accordingly, the HIV viral protein Tat was found to block morphine-mediated increases in MOR-1X expression by similarly blocking morphine-mediated increases in ASF/SF2 expression. Consequently, MOR-1X and HIV viral proteins were found to have a unique and synergistic role in the regulation of intrinsic apoptotic signaling cascades, specifically Bax expression, and in cell proliferation. Therefore, the regulation of alternative splicing events by both opioids and HIV viral proteins involves, in part, the inverse regulation of ASF/SF2 protein expression, through which the expression of the MOR-1X isoform is subsequently and significantly altered. This, in turn, may lead to functional consequences in opioid pharmacokinetics as well as in opioid-related pathology, such as the exacerbation of HIV associated neurocognitive dysfunction, as MOR-1X contains unique functional regions which may be responsible for the observed differences in MAPK and intrinsic apoptotic signaling and cellular proliferation. Collectively, these findings support previous studies that suggest alternative splicing of the MOR is altered by exogenous factors, such as morphine and HIV, identify unique signaling pathways for various opioid receptor isoforms, and are the first to suggest a potential mechanism through which pharmacological interventions could be utilized to alter opioid receptor isoform expression, thereby altering the pharmacological and physiological effects of opioids. / Biomedical Neuroscience
12

Viral Control of SR Protein Activity

Estmer Nilsson, Camilla January 2001 (has links)
<p>Viruses modulate biosynthetic machineries of the host cell for a rapid and efficient virus replication. One important way of modulating protein activity in eukaryotic cells is by reversible phosphorylation. In this thesis we have studied adenovirus and vaccinia virus, two DNA viruses with different replication stategies. Adenovirus replicates and assembles new virions in the nucleus, requiring the host cell transcription and splicing machinieries, whereas vaccinia virus replicates in the cytoplasm, only requiring the cellular translation machinery for its replication. </p><p>Adenovirus uses alternative RNA splicing to produce its proteins. We have shown that adenovirus takes over the cellular splicing machinery by modulating the activity of the essential cellular SR family of splicing factors. Vaccinia virus, that does not use RNA splicing, was shown to completely inactivate SR proteins as splicing regulatory factors. SR proteins are highly phosphorylated, a modification which is important for their activity as regulators of cellular pre-mRNA splicing. We have found that reversible phosphorylation of SR proteins is one mechanism to regulate alternative RNA splicing. We have demonstrated that adenovirus and vaccinia virus induce SR protein dephosphorylation, which inhibit their activity as splicing repressor and splicing activator proteins. We further showed that the adenovirus E4-ORF4 protein, which binds to the cellular protein phosphatase 2A, induced dephosphorylation of a specific SR protein, ASF/SF2, and that this mechanism was important for regulation of adenovirus alternative RNA splicing.</p><p>Inhibition of cellular pre-mRNA splicing results in a block in nuclear- to cytoplasmic transport of cellular mRNAs, ensuring free access of viral mRNAs to the translation machinery. We propose that SR protein dephosphorylation may be a general viral mechanism by which mammalian viruses take control over host cell gene expression.</p>
13

Regulation of adenovirus alternative pre-mRNA splicing : Functional characterization of exonic and intronic splicing enhancer elements

Yue, Bai-Gong January 2000 (has links)
<p>Pre-mRNA splicing and alternative pre-mRNA splicing are key regulatory steps controlling geneexpression in higher eukaryotes. The work in this thesis was focused on a characterization of thesignificance of exonic and intronic splicing enhancer elements for pre-mRNA splicing.</p><p>Previous studies have shown that removal of introns with weak and regulated splice sitesrequire a splicing enhancer for activity. Here we extended these studies by demonstrating thattwo "strong" constitutively active introns, the adenovirus 52,55K and the Drosophila Ftzintrons, are absolutely dependent on a downstream splicing enhancer for activity <i>in vitro</i>.</p><p>Two types splicing enhancers were shown to perform redundant functions as activators ofSplicing. Thus, SR protein binding to an exonic splicing enhancer element or U1 snRNP bindingto a downstream 5'splice site independently stimulated upstream intron removal. The datafurther showed that a 5'splice site was more effective and more versatile in activating splicing.Collectively the data suggest that a U1 enhancer is the prototypical enhancer element activatingsplicing of constitutively active introns.</p><p>Adenovirus IIIa pre-mRNA splicing is enhanced more than 200-fold in infected extracts. Themajor enhancer element responsible for this activation was shown to consist of the IIIa branchsite/polypyrimidne tract region. It functions as a Janus element and blocks splicing in extractsfrom uninfected cells while functioning as a splicing enhancer in the context of infected extracts.</p><p>Phosphorylated SR proteins are essential for pre-mRNA splicing. Large amount recombinantSR proteins are needed in splicing studies. A novel expression system was developed to expressphosphorylated, soluble and functionally active ASF/SF2 in <i>E. Coli</i>.</p>
14

Functional Characterization of the Cellular Protein p32 : A Protein Regulating Adenovirus Transcription and Splicing Through Targeting of Phosphorylation

Öhrmalm, Christina January 2006 (has links)
<p>Cellular processes involved in the conversion of the genetic information from DNA into a protein are often regulated by reversible phosphorylation reactions. By modulating the phosphorylated status of key proteins their activity can either be enhanced or repressed. In this thesis I have studied the significance of phosphorylation in the regulation of transcription and splicing using human adenovirus as a model system.</p><p>The results show that the activity of the cellular SR family of splicing enhancer or repressor proteins are reduced in adenovirus infected nuclear extracts by a virus-induced hypophosphorylation. The viral E4-ORF4 was shown to induce SR protein dephosphorylation by recruiting the cellular protein phosphatase PP2A. The E4-ORF4/PP2A complex was shown to relieve the SR protein-mediated repression of late virus-specific splicing and further activate alternative splicing in transiently transfected cells. Collectively, these results showed that alternative splicing, like many other biological processes, is regulated by reversible protein phosphorylation.</p><p>Similarly, the cellular p32 protein was shown to cause hypophosphorylation of the SR protein ASF/SF2 resulting in a reduced RNA binding capacity of ASF/SF2. This change in ASF/SF2 RNA binding also had a drastic effect on the function of ASF/SF2 as a regulatory protein affecting splice site choice. The cellular p32 protein and the viral E4-ORF4 protein both target the same cellular splicing factor, ASF/SF2. However, they regulate splicing by different mechanisms. E4-ORF4 recruits a phosphatase to dephosphorylate ASF/SF2, while p32 sequester ASF/SF2 in an inactive complex.</p><p>Further, we demonstrated that overexpression of p32 during a lytic infection suppressed transcription from the adenovirus major late transcription unit. p32 induced a selective repression of CAAT-box containing promoters indicating the involvement of the transcription factor CBF/NF-Y in this regulation. A further analysis showed that p32 caused a hyperphosphorylation of the CTD of RNA Pol II, which resulted in a significant reduction in the processivity of Pol II during the elongation phase of transcription.</p><p>In summary, we have shown that E4-ORF4 regulates the activity of splicing regulatory SR proteins, and that p32 regulates the activity of the SR protein ASF/SF2 in splicing and Pol II processivity during transcription elongation. Mechanistically, both E4-ORF4 and p32 appears to function by regulating the phosphorylated status of key cellular proteins involved in these processes.</p>
15

Regulation of adenovirus alternative pre-mRNA splicing : Functional characterization of exonic and intronic splicing enhancer elements

Yue, Bai-Gong January 2000 (has links)
Pre-mRNA splicing and alternative pre-mRNA splicing are key regulatory steps controlling geneexpression in higher eukaryotes. The work in this thesis was focused on a characterization of thesignificance of exonic and intronic splicing enhancer elements for pre-mRNA splicing. Previous studies have shown that removal of introns with weak and regulated splice sitesrequire a splicing enhancer for activity. Here we extended these studies by demonstrating thattwo "strong" constitutively active introns, the adenovirus 52,55K and the Drosophila Ftzintrons, are absolutely dependent on a downstream splicing enhancer for activity in vitro. Two types splicing enhancers were shown to perform redundant functions as activators ofSplicing. Thus, SR protein binding to an exonic splicing enhancer element or U1 snRNP bindingto a downstream 5'splice site independently stimulated upstream intron removal. The datafurther showed that a 5'splice site was more effective and more versatile in activating splicing.Collectively the data suggest that a U1 enhancer is the prototypical enhancer element activatingsplicing of constitutively active introns. Adenovirus IIIa pre-mRNA splicing is enhanced more than 200-fold in infected extracts. Themajor enhancer element responsible for this activation was shown to consist of the IIIa branchsite/polypyrimidne tract region. It functions as a Janus element and blocks splicing in extractsfrom uninfected cells while functioning as a splicing enhancer in the context of infected extracts. Phosphorylated SR proteins are essential for pre-mRNA splicing. Large amount recombinantSR proteins are needed in splicing studies. A novel expression system was developed to expressphosphorylated, soluble and functionally active ASF/SF2 in E. Coli.
16

Viral Control of SR Protein Activity

Estmer Nilsson, Camilla January 2001 (has links)
Viruses modulate biosynthetic machineries of the host cell for a rapid and efficient virus replication. One important way of modulating protein activity in eukaryotic cells is by reversible phosphorylation. In this thesis we have studied adenovirus and vaccinia virus, two DNA viruses with different replication stategies. Adenovirus replicates and assembles new virions in the nucleus, requiring the host cell transcription and splicing machinieries, whereas vaccinia virus replicates in the cytoplasm, only requiring the cellular translation machinery for its replication. Adenovirus uses alternative RNA splicing to produce its proteins. We have shown that adenovirus takes over the cellular splicing machinery by modulating the activity of the essential cellular SR family of splicing factors. Vaccinia virus, that does not use RNA splicing, was shown to completely inactivate SR proteins as splicing regulatory factors. SR proteins are highly phosphorylated, a modification which is important for their activity as regulators of cellular pre-mRNA splicing. We have found that reversible phosphorylation of SR proteins is one mechanism to regulate alternative RNA splicing. We have demonstrated that adenovirus and vaccinia virus induce SR protein dephosphorylation, which inhibit their activity as splicing repressor and splicing activator proteins. We further showed that the adenovirus E4-ORF4 protein, which binds to the cellular protein phosphatase 2A, induced dephosphorylation of a specific SR protein, ASF/SF2, and that this mechanism was important for regulation of adenovirus alternative RNA splicing. Inhibition of cellular pre-mRNA splicing results in a block in nuclear- to cytoplasmic transport of cellular mRNAs, ensuring free access of viral mRNAs to the translation machinery. We propose that SR protein dephosphorylation may be a general viral mechanism by which mammalian viruses take control over host cell gene expression.
17

Functional Characterization of the Cellular Protein p32 : A Protein Regulating Adenovirus Transcription and Splicing Through Targeting of Phosphorylation

Öhrmalm, Christina January 2006 (has links)
Cellular processes involved in the conversion of the genetic information from DNA into a protein are often regulated by reversible phosphorylation reactions. By modulating the phosphorylated status of key proteins their activity can either be enhanced or repressed. In this thesis I have studied the significance of phosphorylation in the regulation of transcription and splicing using human adenovirus as a model system. The results show that the activity of the cellular SR family of splicing enhancer or repressor proteins are reduced in adenovirus infected nuclear extracts by a virus-induced hypophosphorylation. The viral E4-ORF4 was shown to induce SR protein dephosphorylation by recruiting the cellular protein phosphatase PP2A. The E4-ORF4/PP2A complex was shown to relieve the SR protein-mediated repression of late virus-specific splicing and further activate alternative splicing in transiently transfected cells. Collectively, these results showed that alternative splicing, like many other biological processes, is regulated by reversible protein phosphorylation. Similarly, the cellular p32 protein was shown to cause hypophosphorylation of the SR protein ASF/SF2 resulting in a reduced RNA binding capacity of ASF/SF2. This change in ASF/SF2 RNA binding also had a drastic effect on the function of ASF/SF2 as a regulatory protein affecting splice site choice. The cellular p32 protein and the viral E4-ORF4 protein both target the same cellular splicing factor, ASF/SF2. However, they regulate splicing by different mechanisms. E4-ORF4 recruits a phosphatase to dephosphorylate ASF/SF2, while p32 sequester ASF/SF2 in an inactive complex. Further, we demonstrated that overexpression of p32 during a lytic infection suppressed transcription from the adenovirus major late transcription unit. p32 induced a selective repression of CAAT-box containing promoters indicating the involvement of the transcription factor CBF/NF-Y in this regulation. A further analysis showed that p32 caused a hyperphosphorylation of the CTD of RNA Pol II, which resulted in a significant reduction in the processivity of Pol II during the elongation phase of transcription. In summary, we have shown that E4-ORF4 regulates the activity of splicing regulatory SR proteins, and that p32 regulates the activity of the SR protein ASF/SF2 in splicing and Pol II processivity during transcription elongation. Mechanistically, both E4-ORF4 and p32 appears to function by regulating the phosphorylated status of key cellular proteins involved in these processes.
18

The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA Splicing

Dauksaite, Vita January 2003 (has links)
<p>ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2.</p><p>I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage.</p><p>In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain.</p><p>Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.</p>
19

The Modular Domain Structure of ASF/SF2: Significance for its Function as a Regulator of RNA Splicing

Dauksaite, Vita January 2003 (has links)
ASF/SF2 is an essential splicing factor, required for constitutive splicing, and functioning as a regulator of alternative splicing. ASF/SF2 is modular in structure and contains two amino-terminal RNA binding domains (RBD1 and RBD2), and a carboxy-terminal RS domain. The results from my studies show that the different activities of ASF/SF2 as a regulator of alternative 5’ and 3’ splice site selection can be attributed to distinct domains of ASF/SF2. I show that ASF/SF2-RBD2 is both necessary and sufficient to reproduce the splicing repressor function of ASF/SF2. A SWQDLKD motif was shown to be essential for the splicing repressor activity of ASF/SF2. In conclusion, this study demonstrated that ASF/SF2 encodes for distinct domains responsible for its function as a splicing enhancer (the RS domain) or a splicing repressor (the RBD2) protein. Using a model transcript containing two competing 3’ splice sites it was further demonstrated that the activity of ASF/SF2 as a regulator of alternative 3’ splice site selection was directional: i.e. resulting in RS or RBD1 mediated activation of upstream 3’ splice site selection while simultaneously causing an RBD2 mediated repression of downstream 3’ splice site usage. In alternative 5’ splice site selection, the RBD2 alone was sufficient to reproduce the activity of the full-length protein as an inducer of proximal 5’ splice site usage, while RBD1 had the opposite effect and induced distal 5’ splice site selection. The conserved SWQDLKD motif and the RNP-1 type RNA recognition motif in ASF/SF2-RBD2 were both essential for this induction. The activity of the ASF/SF2-RBD2 domain as a regulator of alternative 5’ splice site was shown to correlate with the RNA binding capacity of the domain. Collectively, my results suggest that the RBD2 domain in ASF/SF2 plays the most decisive role in the alternative 5’ and 3’ splice site regulatory activities of ASF/SF2.

Page generated in 0.0414 seconds